SPHERICALLY BALANCED HILBERT SPACES OF FORMAL POWER SERIES IN SEVERAL VARIABLES. I
Motivated by theory of spherical Cauchy dual tuples, we study the spherically balanced spaces, that is, Hilbert spaces H2(β) of formal power series in the variables z1,..., zm for which $\{{\mathrm{\beta }}_{\mathrm{n}}{\}}_{\mathrm{n}\in {\mathrm{\mathbb{Z}}}_{+}^{\mathrm{m}}}$ satisfies $\sum _{\m...
Gespeichert in:
Veröffentlicht in: | Journal of operator theory 2014-10, Vol.72 (2), p.405-428 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Motivated by theory of spherical Cauchy dual tuples, we study the spherically balanced spaces, that is, Hilbert spaces H2(β) of formal power series in the variables z1,..., zm for which $\{{\mathrm{\beta }}_{\mathrm{n}}{\}}_{\mathrm{n}\in {\mathrm{\mathbb{Z}}}_{+}^{\mathrm{m}}}$ satisfies $\sum _{\mathrm{k}=1}^{\mathrm{m}}\frac{{\mathrm{\beta }}_{\mathrm{n}+{\mathrm{\varepsilon }}_{\mathrm{i}}+{\mathrm{\varepsilon }}_{\mathrm{k}}}^{2}}{{\mathrm{\beta }}_{\mathrm{n}+{\mathrm{\varepsilon }}_{\mathrm{i}}}^{2}}=\sum _{\mathrm{k}=1}^{\mathrm{m}}\frac{{\mathrm{\beta }}_{\mathrm{n}+{\mathrm{\varepsilon }}_{\mathrm{j}}+{\mathrm{\varepsilon }}_{\mathrm{k}}}^{2}}{{\mathrm{\beta }}_{\mathrm{n}+{\mathrm{\varepsilon }}_{\mathrm{j}}}^{2}}$ for all $\mathrm{n}\in {\mathrm{\mathbb{Z}}}_{+}^{\mathrm{m}}$ and i, j = 1,..., m. The main result in this paper states that H2(β) is spherically balanced if and only if there exist a Reinhardt measure μ supported on the unit sphere ∂B and a Hilbert space H2(γ) of formal power series in one variable such that ${\Vert \mathrm{f}\Vert }_{{\mathrm{H}}^{2}\left(\mathrm{\beta }\right)}^{2}=\underset{\partial \mathrm{\mathbb{B}}}{\int }{\Vert \mathrm{f}_{\mathrm{z}}\Vert }_{{\mathrm{H}}^{2}\left(\mathrm{\gamma }\right)}^{2}\mathrm{d}\mathrm{\mu }\left(\mathrm{z}\right) \quad (\mathrm{f}\in {\mathrm{H}}^{2}\left(\mathrm{\beta }\right))$. |
---|---|
ISSN: | 0379-4024 1841-7744 |
DOI: | 10.7900/jot.2013apr22.2000 |