ADDITIVE DERIVATIONS ON ALGEBRAS OF MEASURABLE OPERATORS
Given a von Neumann algebra M we introduce so called central extension mix(M) of M. We show that mix(M) is a ∗-subalgebra in the algebra LS(M) of all locally measurable operators with respect to M, and this algebra coincides with LS(M) if and only if M does not admit type II direct summands. We prov...
Gespeichert in:
Veröffentlicht in: | Journal of operator theory 2012-04, Vol.67 (2), p.495-510 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given a von Neumann algebra M we introduce so called central extension mix(M) of M. We show that mix(M) is a ∗-subalgebra in the algebra LS(M) of all locally measurable operators with respect to M, and this algebra coincides with LS(M) if and only if M does not admit type II direct summands. We prove that if M is a properly infinite von Neumann algebra then every additive derivation on the algebra mix(M) is inner. In particular each derivation on the algebra LS(M), where M is a type I∞ or a type III von Neumann algebra, is inner. |
---|---|
ISSN: | 0379-4024 1841-7744 |