SOME REMARKS ON HAAGERUP'S APPROXIMATION PROPERTY
A finite von Neumann algebra M with a faithful normal trace τ has Haagerup's approximation property if there exists a pointwise deformation of the identity in 2-norm by subtracial compact completely positive maps. In this paper we prove that the subtraciality condition can be removed. This enab...
Gespeichert in:
Veröffentlicht in: | Journal of operator theory 2011-03, Vol.65 (2), p.403-417 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 417 |
---|---|
container_issue | 2 |
container_start_page | 403 |
container_title | Journal of operator theory |
container_volume | 65 |
creator | BANNON, JON P. FANG, JUNSHENG |
description | A finite von Neumann algebra M with a faithful normal trace τ has Haagerup's approximation property if there exists a pointwise deformation of the identity in 2-norm by subtracial compact completely positive maps. In this paper we prove that the subtraciality condition can be removed. This enables us to provide a description of Haagerup's approximation property in terms of correspondences. We also show that if N ⊂ M is an amenable inclusion of finite von Neumann algebras and N has Haagerup's approximation property, then M also has Haagerup's approximation property. |
format | Article |
fullrecord | <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_24715977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24715977</jstor_id><sourcerecordid>24715977</sourcerecordid><originalsourceid>FETCH-LOGICAL-j177t-7a90fad12bf425c8388e53701d9c1a0802b8e99ffea7aee2e53c0172091a55483</originalsourceid><addsrcrecordid>eNotjF1LwzAUQIMoWKc_QeibT4F788FNHsOIW3FdS9qBPo2sS8CiKO1e_PcW9OkcOHCuWIFGISdS6poVIMlyBULdsrt5HgEkAomCYdfUvgy-duGlK5t9uXVu48OhfepK17ahea1q11dLWLz1oX-7Zzc5fszp4Z8rdnj2_XrLd82mWrsdH5HowilayPGM4pSV0IORxiQtCfBsB4xgQJxMsjbnFCmmJJY4AJIAi1FrZeSKPf59x_nyNR2_p_fPOP0chSLUlkj-ApSgOYI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>SOME REMARKS ON HAAGERUP'S APPROXIMATION PROPERTY</title><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>BANNON, JON P. ; FANG, JUNSHENG</creator><creatorcontrib>BANNON, JON P. ; FANG, JUNSHENG</creatorcontrib><description>A finite von Neumann algebra M with a faithful normal trace τ has Haagerup's approximation property if there exists a pointwise deformation of the identity in 2-norm by subtracial compact completely positive maps. In this paper we prove that the subtraciality condition can be removed. This enables us to provide a description of Haagerup's approximation property in terms of correspondences. We also show that if N ⊂ M is an amenable inclusion of finite von Neumann algebras and N has Haagerup's approximation property, then M also has Haagerup's approximation property.</description><identifier>ISSN: 0379-4024</identifier><identifier>EISSN: 1841-7744</identifier><language>eng</language><publisher>Theta Foundation</publisher><subject>Approximation ; Coefficients ; Hilbert spaces ; Mathematical theorems ; Mathematical vectors ; Property titles ; Subalgebras ; Topology ; Von Neumann algebra</subject><ispartof>Journal of operator theory, 2011-03, Vol.65 (2), p.403-417</ispartof><rights>Copyright © 2011 Theta</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24715977$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24715977$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>BANNON, JON P.</creatorcontrib><creatorcontrib>FANG, JUNSHENG</creatorcontrib><title>SOME REMARKS ON HAAGERUP'S APPROXIMATION PROPERTY</title><title>Journal of operator theory</title><description>A finite von Neumann algebra M with a faithful normal trace τ has Haagerup's approximation property if there exists a pointwise deformation of the identity in 2-norm by subtracial compact completely positive maps. In this paper we prove that the subtraciality condition can be removed. This enables us to provide a description of Haagerup's approximation property in terms of correspondences. We also show that if N ⊂ M is an amenable inclusion of finite von Neumann algebras and N has Haagerup's approximation property, then M also has Haagerup's approximation property.</description><subject>Approximation</subject><subject>Coefficients</subject><subject>Hilbert spaces</subject><subject>Mathematical theorems</subject><subject>Mathematical vectors</subject><subject>Property titles</subject><subject>Subalgebras</subject><subject>Topology</subject><subject>Von Neumann algebra</subject><issn>0379-4024</issn><issn>1841-7744</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotjF1LwzAUQIMoWKc_QeibT4F788FNHsOIW3FdS9qBPo2sS8CiKO1e_PcW9OkcOHCuWIFGISdS6poVIMlyBULdsrt5HgEkAomCYdfUvgy-duGlK5t9uXVu48OhfepK17ahea1q11dLWLz1oX-7Zzc5fszp4Z8rdnj2_XrLd82mWrsdH5HowilayPGM4pSV0IORxiQtCfBsB4xgQJxMsjbnFCmmJJY4AJIAi1FrZeSKPf59x_nyNR2_p_fPOP0chSLUlkj-ApSgOYI</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>BANNON, JON P.</creator><creator>FANG, JUNSHENG</creator><general>Theta Foundation</general><scope/></search><sort><creationdate>20110301</creationdate><title>SOME REMARKS ON HAAGERUP'S APPROXIMATION PROPERTY</title><author>BANNON, JON P. ; FANG, JUNSHENG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j177t-7a90fad12bf425c8388e53701d9c1a0802b8e99ffea7aee2e53c0172091a55483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Approximation</topic><topic>Coefficients</topic><topic>Hilbert spaces</topic><topic>Mathematical theorems</topic><topic>Mathematical vectors</topic><topic>Property titles</topic><topic>Subalgebras</topic><topic>Topology</topic><topic>Von Neumann algebra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BANNON, JON P.</creatorcontrib><creatorcontrib>FANG, JUNSHENG</creatorcontrib><jtitle>Journal of operator theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BANNON, JON P.</au><au>FANG, JUNSHENG</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SOME REMARKS ON HAAGERUP'S APPROXIMATION PROPERTY</atitle><jtitle>Journal of operator theory</jtitle><date>2011-03-01</date><risdate>2011</risdate><volume>65</volume><issue>2</issue><spage>403</spage><epage>417</epage><pages>403-417</pages><issn>0379-4024</issn><eissn>1841-7744</eissn><abstract>A finite von Neumann algebra M with a faithful normal trace τ has Haagerup's approximation property if there exists a pointwise deformation of the identity in 2-norm by subtracial compact completely positive maps. In this paper we prove that the subtraciality condition can be removed. This enables us to provide a description of Haagerup's approximation property in terms of correspondences. We also show that if N ⊂ M is an amenable inclusion of finite von Neumann algebras and N has Haagerup's approximation property, then M also has Haagerup's approximation property.</abstract><pub>Theta Foundation</pub><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0379-4024 |
ispartof | Journal of operator theory, 2011-03, Vol.65 (2), p.403-417 |
issn | 0379-4024 1841-7744 |
language | eng |
recordid | cdi_jstor_primary_24715977 |
source | JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals |
subjects | Approximation Coefficients Hilbert spaces Mathematical theorems Mathematical vectors Property titles Subalgebras Topology Von Neumann algebra |
title | SOME REMARKS ON HAAGERUP'S APPROXIMATION PROPERTY |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A46%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SOME%20REMARKS%20ON%20HAAGERUP'S%20APPROXIMATION%20PROPERTY&rft.jtitle=Journal%20of%20operator%20theory&rft.au=BANNON,%20JON%20P.&rft.date=2011-03-01&rft.volume=65&rft.issue=2&rft.spage=403&rft.epage=417&rft.pages=403-417&rft.issn=0379-4024&rft.eissn=1841-7744&rft_id=info:doi/&rft_dat=%3Cjstor%3E24715977%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=24715977&rfr_iscdi=true |