SOME REMARKS ON HAAGERUP'S APPROXIMATION PROPERTY
A finite von Neumann algebra M with a faithful normal trace τ has Haagerup's approximation property if there exists a pointwise deformation of the identity in 2-norm by subtracial compact completely positive maps. In this paper we prove that the subtraciality condition can be removed. This enab...
Gespeichert in:
Veröffentlicht in: | Journal of operator theory 2011-03, Vol.65 (2), p.403-417 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A finite von Neumann algebra M with a faithful normal trace τ has Haagerup's approximation property if there exists a pointwise deformation of the identity in 2-norm by subtracial compact completely positive maps. In this paper we prove that the subtraciality condition can be removed. This enables us to provide a description of Haagerup's approximation property in terms of correspondences. We also show that if N ⊂ M is an amenable inclusion of finite von Neumann algebras and N has Haagerup's approximation property, then M also has Haagerup's approximation property. |
---|---|
ISSN: | 0379-4024 1841-7744 |