CUNTZ-PIMSNER ALGEBRAS OF GROUP ACTIONS
We associate a *-bimodule over the group algebra to every self-similar group action on the space of one-sided sequences. Completions of the group algebra, which agree with the bimodule are investigated. This gives new examples of Hilbert bimodules and the associated Cuntz-Pimsner algebras. A direct...
Gespeichert in:
Veröffentlicht in: | Journal of operator theory 2004-09, Vol.52 (2), p.223-249 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 249 |
---|---|
container_issue | 2 |
container_start_page | 223 |
container_title | Journal of operator theory |
container_volume | 52 |
creator | NEKRASHEVYCH, VOLODYMYR V. |
description | We associate a *-bimodule over the group algebra to every self-similar group action on the space of one-sided sequences. Completions of the group algebra, which agree with the bimodule are investigated. This gives new examples of Hilbert bimodules and the associated Cuntz-Pimsner algebras. A direct proof of simplicity of these algebras is given. We show also a relation between the Cuntz algebras and the Higman-Thompson groups and define an analog of the Higman-Thompson group for the Cuntz-Pimsner algebra of a self-similar group action. |
format | Article |
fullrecord | <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_24715627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24715627</jstor_id><sourcerecordid>24715627</sourcerecordid><originalsourceid>FETCH-LOGICAL-j177t-995217eedd3401ac949b620cf6d76334f51b322a0579e22d87c1d7dce27af85e3</originalsourceid><addsrcrecordid>eNotzE1LxDAQANAgCtZ1f8JCb54Cmcmk0xxr6dZCbZd-XLws2SYFi6K0e_Hfe9DTu70bEUFKIJmJbkWkNFtJCulePGzbopQGxRiJp3xshjd5ql77pujirC6L5y7r4_YYl107nuIsH6q26R_F3ew-trD_dyfGYzHkL7JuyyrParkA81VaaxA4BO81KXCTJXtJUE1z4jnRmmYDF43olGEbEH3KE3j2U0B2c2qC3onD37ts16_1_L2-f7r154zEYBJk_Qs0PzaQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>CUNTZ-PIMSNER ALGEBRAS OF GROUP ACTIONS</title><source>Jstor Complete Legacy</source><source>EZB-FREE-00999 freely available EZB journals</source><source>JSTOR Mathematics & Statistics</source><creator>NEKRASHEVYCH, VOLODYMYR V.</creator><creatorcontrib>NEKRASHEVYCH, VOLODYMYR V.</creatorcontrib><description>We associate a *-bimodule over the group algebra to every self-similar group action on the space of one-sided sequences. Completions of the group algebra, which agree with the bimodule are investigated. This gives new examples of Hilbert bimodules and the associated Cuntz-Pimsner algebras. A direct proof of simplicity of these algebras is given. We show also a relation between the Cuntz algebras and the Higman-Thompson groups and define an analog of the Higman-Thompson group for the Cuntz-Pimsner algebra of a self-similar group action.</description><identifier>ISSN: 0379-4024</identifier><identifier>EISSN: 1841-7744</identifier><language>eng</language><publisher>Theta Foundation</publisher><subject>Algebra ; Alphabets ; Homeomorphism ; Homomorphisms ; Labor union representation ; Mathematical theorems ; Mathematical vectors ; Mathematics ; Universal algebra ; Von Neumann algebra</subject><ispartof>Journal of operator theory, 2004-09, Vol.52 (2), p.223-249</ispartof><rights>Copyright © 2004 Theta</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24715627$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24715627$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>NEKRASHEVYCH, VOLODYMYR V.</creatorcontrib><title>CUNTZ-PIMSNER ALGEBRAS OF GROUP ACTIONS</title><title>Journal of operator theory</title><description>We associate a *-bimodule over the group algebra to every self-similar group action on the space of one-sided sequences. Completions of the group algebra, which agree with the bimodule are investigated. This gives new examples of Hilbert bimodules and the associated Cuntz-Pimsner algebras. A direct proof of simplicity of these algebras is given. We show also a relation between the Cuntz algebras and the Higman-Thompson groups and define an analog of the Higman-Thompson group for the Cuntz-Pimsner algebra of a self-similar group action.</description><subject>Algebra</subject><subject>Alphabets</subject><subject>Homeomorphism</subject><subject>Homomorphisms</subject><subject>Labor union representation</subject><subject>Mathematical theorems</subject><subject>Mathematical vectors</subject><subject>Mathematics</subject><subject>Universal algebra</subject><subject>Von Neumann algebra</subject><issn>0379-4024</issn><issn>1841-7744</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotzE1LxDAQANAgCtZ1f8JCb54Cmcmk0xxr6dZCbZd-XLws2SYFi6K0e_Hfe9DTu70bEUFKIJmJbkWkNFtJCulePGzbopQGxRiJp3xshjd5ql77pujirC6L5y7r4_YYl107nuIsH6q26R_F3ew-trD_dyfGYzHkL7JuyyrParkA81VaaxA4BO81KXCTJXtJUE1z4jnRmmYDF43olGEbEH3KE3j2U0B2c2qC3onD37ts16_1_L2-f7r154zEYBJk_Qs0PzaQ</recordid><startdate>20040901</startdate><enddate>20040901</enddate><creator>NEKRASHEVYCH, VOLODYMYR V.</creator><general>Theta Foundation</general><scope/></search><sort><creationdate>20040901</creationdate><title>CUNTZ-PIMSNER ALGEBRAS OF GROUP ACTIONS</title><author>NEKRASHEVYCH, VOLODYMYR V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j177t-995217eedd3401ac949b620cf6d76334f51b322a0579e22d87c1d7dce27af85e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algebra</topic><topic>Alphabets</topic><topic>Homeomorphism</topic><topic>Homomorphisms</topic><topic>Labor union representation</topic><topic>Mathematical theorems</topic><topic>Mathematical vectors</topic><topic>Mathematics</topic><topic>Universal algebra</topic><topic>Von Neumann algebra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>NEKRASHEVYCH, VOLODYMYR V.</creatorcontrib><jtitle>Journal of operator theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>NEKRASHEVYCH, VOLODYMYR V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CUNTZ-PIMSNER ALGEBRAS OF GROUP ACTIONS</atitle><jtitle>Journal of operator theory</jtitle><date>2004-09-01</date><risdate>2004</risdate><volume>52</volume><issue>2</issue><spage>223</spage><epage>249</epage><pages>223-249</pages><issn>0379-4024</issn><eissn>1841-7744</eissn><abstract>We associate a *-bimodule over the group algebra to every self-similar group action on the space of one-sided sequences. Completions of the group algebra, which agree with the bimodule are investigated. This gives new examples of Hilbert bimodules and the associated Cuntz-Pimsner algebras. A direct proof of simplicity of these algebras is given. We show also a relation between the Cuntz algebras and the Higman-Thompson groups and define an analog of the Higman-Thompson group for the Cuntz-Pimsner algebra of a self-similar group action.</abstract><pub>Theta Foundation</pub><tpages>27</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0379-4024 |
ispartof | Journal of operator theory, 2004-09, Vol.52 (2), p.223-249 |
issn | 0379-4024 1841-7744 |
language | eng |
recordid | cdi_jstor_primary_24715627 |
source | Jstor Complete Legacy; EZB-FREE-00999 freely available EZB journals; JSTOR Mathematics & Statistics |
subjects | Algebra Alphabets Homeomorphism Homomorphisms Labor union representation Mathematical theorems Mathematical vectors Mathematics Universal algebra Von Neumann algebra |
title | CUNTZ-PIMSNER ALGEBRAS OF GROUP ACTIONS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T14%3A10%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CUNTZ-PIMSNER%20ALGEBRAS%20OF%20GROUP%20ACTIONS&rft.jtitle=Journal%20of%20operator%20theory&rft.au=NEKRASHEVYCH,%20VOLODYMYR%20V.&rft.date=2004-09-01&rft.volume=52&rft.issue=2&rft.spage=223&rft.epage=249&rft.pages=223-249&rft.issn=0379-4024&rft.eissn=1841-7744&rft_id=info:doi/&rft_dat=%3Cjstor%3E24715627%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=24715627&rfr_iscdi=true |