CUNTZ-PIMSNER ALGEBRAS OF GROUP ACTIONS

We associate a *-bimodule over the group algebra to every self-similar group action on the space of one-sided sequences. Completions of the group algebra, which agree with the bimodule are investigated. This gives new examples of Hilbert bimodules and the associated Cuntz-Pimsner algebras. A direct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of operator theory 2004-09, Vol.52 (2), p.223-249
1. Verfasser: NEKRASHEVYCH, VOLODYMYR V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We associate a *-bimodule over the group algebra to every self-similar group action on the space of one-sided sequences. Completions of the group algebra, which agree with the bimodule are investigated. This gives new examples of Hilbert bimodules and the associated Cuntz-Pimsner algebras. A direct proof of simplicity of these algebras is given. We show also a relation between the Cuntz algebras and the Higman-Thompson groups and define an analog of the Higman-Thompson group for the Cuntz-Pimsner algebra of a self-similar group action.
ISSN:0379-4024
1841-7744