CUNTZ-PIMSNER ALGEBRAS OF GROUP ACTIONS
We associate a *-bimodule over the group algebra to every self-similar group action on the space of one-sided sequences. Completions of the group algebra, which agree with the bimodule are investigated. This gives new examples of Hilbert bimodules and the associated Cuntz-Pimsner algebras. A direct...
Gespeichert in:
Veröffentlicht in: | Journal of operator theory 2004-09, Vol.52 (2), p.223-249 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We associate a *-bimodule over the group algebra to every self-similar group action on the space of one-sided sequences. Completions of the group algebra, which agree with the bimodule are investigated. This gives new examples of Hilbert bimodules and the associated Cuntz-Pimsner algebras. A direct proof of simplicity of these algebras is given. We show also a relation between the Cuntz algebras and the Higman-Thompson groups and define an analog of the Higman-Thompson group for the Cuntz-Pimsner algebra of a self-similar group action. |
---|---|
ISSN: | 0379-4024 1841-7744 |