FINITE REPRESENTABILITY OF HOMOGENEOUS HILBERTIAN OPERATOR SPACES IN SPACES WITH FEW COMPLETELY BOUNDED MAPS
For every homogeneous Hilbertian operator space H, we construct a Hilbertian operator space X such that every infinite dimensional subquotient Ƴ of X is completely indecomposable, and fails the Operator Approximation Property, yet H is completely finitely representable in Ƴ. If H satisfies certain c...
Gespeichert in:
Veröffentlicht in: | Journal of operator theory 2009-01, Vol.61 (1), p.3-18 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For every homogeneous Hilbertian operator space H, we construct a Hilbertian operator space X such that every infinite dimensional subquotient Ƴ of X is completely indecomposable, and fails the Operator Approximation Property, yet H is completely finitely representable in Ƴ. If H satisfies certain conditions, we also prove that every completely bounded map on such Ƴ is a compact perturbation of a scalar. |
---|---|
ISSN: | 0379-4024 1841-7744 |