FINITE REPRESENTABILITY OF HOMOGENEOUS HILBERTIAN OPERATOR SPACES IN SPACES WITH FEW COMPLETELY BOUNDED MAPS

For every homogeneous Hilbertian operator space H, we construct a Hilbertian operator space X such that every infinite dimensional subquotient Ƴ of X is completely indecomposable, and fails the Operator Approximation Property, yet H is completely finitely representable in Ƴ. If H satisfies certain c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of operator theory 2009-01, Vol.61 (1), p.3-18
1. Verfasser: OIKHBERG, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For every homogeneous Hilbertian operator space H, we construct a Hilbertian operator space X such that every infinite dimensional subquotient Ƴ of X is completely indecomposable, and fails the Operator Approximation Property, yet H is completely finitely representable in Ƴ. If H satisfies certain conditions, we also prove that every completely bounded map on such Ƴ is a compact perturbation of a scalar.
ISSN:0379-4024
1841-7744