ON ℤ/2ℤ-GRADED KK-THEORY AND ITS RELATION WITH THE GRADED Ext-FUNCTOR
This paper studies the relation between KK-theory and the Ext-functor of Kasparov for ℤ2-graded C*-algebras. We use an approach similar to the picture of J. Cuntz in the ungraded case. We show that the graded Ext-functor coincides with ℤ2-equivariant KK-theory up to a shift in dimension and that the...
Gespeichert in:
Veröffentlicht in: | Journal of operator theory 1999-07, Vol.42 (1), p.3-36 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper studies the relation between KK-theory and the Ext-functor of Kasparov for ℤ2-graded C*-algebras. We use an approach similar to the picture of J. Cuntz in the ungraded case. We show that the graded Ext-functor coincides with ℤ2-equivariant KK-theory up to a shift in dimension and that the graded KK-functor can be expressed in terms of ℤ2-equivariant KK-theory. We derive a (double) exact sequence relating both theories. |
---|---|
ISSN: | 0379-4024 1841-7744 |