Penalty-Regulated Dynamics and Robust Learning Procedures in Games
Starting from a heuristic learning scheme for strategic N -person games, we derive a new class of continuous-time learning dynamics consisting of a replicator-like drift adjusted by a penalty term that renders the boundary of the game’s strategy space repelling. These penalty-regulated dynamics are...
Gespeichert in:
Veröffentlicht in: | Mathematics of operations research 2015-08, Vol.40 (3), p.611-633 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Starting from a heuristic learning scheme for strategic
N
-person games, we derive a new class of continuous-time learning dynamics consisting of a replicator-like drift adjusted by a penalty term that renders the boundary of the game’s strategy space repelling. These penalty-regulated dynamics are equivalent to players keeping an exponentially discounted aggregate of their ongoing payoffs and then using a smooth best response to pick an action based on these performance scores. Owing to this inherent duality, the proposed dynamics satisfy a variant of the folk theorem of evolutionary game theory and they converge to (arbitrarily precise) approximations of Nash equilibria in potential games. Motivated by applications to traffic engineering, we exploit this duality further to design a discrete-time, payoff-based learning algorithm that retains these convergence properties and only requires players to observe their in-game payoffs. Moreover, the algorithm remains robust in the presence of stochastic perturbations and observation errors, and it does not require any synchronization between players. |
---|---|
ISSN: | 0364-765X 1526-5471 |
DOI: | 10.1287/moor.2014.0687 |