Modelling the structural response of an eukaryotic cell in the optical stretcher
The cytoskeleton of an eukaryotic cell is a composite polymer material with unique structural (mechanical) properties. To investigate the role of individual cytoskeletal polymers in the deformation response of a cell to an external force (stress), we created two structural models – a thick shell mod...
Gespeichert in:
Veröffentlicht in: | Current science (Bangalore) 2005-05, Vol.88 (9), p.1434-1440 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The cytoskeleton of an eukaryotic cell is a composite polymer material with unique structural (mechanical) properties. To investigate the role of individual cytoskeletal polymers in the deformation response of a cell to an external force (stress), we created two structural models – a thick shell model for the actin cortex, and a three-layered model for the whole cell. These structural models for a cell are based on data obtained by deforming suspended cells, where each cell is stretched between two counter-propagating laser beams using an optical stretcher. Our models, with the data, suggest that the outer actin cortex is the main determinant of the structural response of the cell. |
---|---|
ISSN: | 0011-3891 |