AFFINIZATION OF CATEGORY O FOR QUANTUM GROUPS
Let g be a simple Lie algebra. We consider the category $\hat{\mathrm{O}}$ of those modules over the affine quantum group ${\mathrm{U}}_{\mathrm{q}}\left(\hat{\mathrm{g}}\right)$ whose ${\mathrm{U}}_{\mathrm{q}}\left(\mathrm{g}\right)$-weights have finite multiplicity and lie in a finite union of co...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 2014-09, Vol.366 (9), p.4815-4847 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4847 |
---|---|
container_issue | 9 |
container_start_page | 4815 |
container_title | Transactions of the American Mathematical Society |
container_volume | 366 |
creator | MUKHIN, E. YOUNG, C. A. S. |
description | Let g be a simple Lie algebra. We consider the category $\hat{\mathrm{O}}$ of those modules over the affine quantum group ${\mathrm{U}}_{\mathrm{q}}\left(\hat{\mathrm{g}}\right)$ whose ${\mathrm{U}}_{\mathrm{q}}\left(\mathrm{g}\right)$-weights have finite multiplicity and lie in a finite union of cones generated by negative roots. We show that many properties of the category of the finite-dimensional representations naturally extend to the category $\hat{\mathrm{O}}$. In particular, we define the minimal affinizations of parabolic Verma modules. In types ABCFG we classify these minimal affinizations and conjecture a Weyl denominator type formula for their characters. |
doi_str_mv | 10.1090/S0002-9947-2014-06039-X |
format | Article |
fullrecord | <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_23813967</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23813967</jstor_id><sourcerecordid>23813967</sourcerecordid><originalsourceid>FETCH-LOGICAL-j92t-e17a643fcfa57a00538b88f839c676fb51c25035136ba5d18cdaceed80dbac7d3</originalsourceid><addsrcrecordid>eNo9jE1KxDAYQLNQcJzxCGIuEP3SNH_LUKa1MDZjJwV1M6RJAxZFaWfjNdx7AU_nERQUV4_Hg4fQBYVLChqudgCQEa1zSTKgOQEBTJO7I7T4DyfodJ7HH4VciQUCU5Z1Uz8YV9sG2xIXxq0r297jr4_3T1zaFt92pnHdDa5a2213K3Sc_NM8nP1xiVy5dsU12diqLsyGjDo7kIFKL3KWQvJcegDOVK9UUkwHIUXqOQ0ZB8YpE73nkaoQfRiGqCD2PsjIluj8dzvOh5dp_zo9PvvpbZ8xRZkWkn0DVo1AAQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>AFFINIZATION OF CATEGORY O FOR QUANTUM GROUPS</title><source>JSTOR Mathematics and Statistics</source><source>American Mathematical Society Journals and Series</source><source>Free E-Journal (出版社公開部分のみ)</source><source>American Mathematical Society Publications (Freely Accessible)(OpenAccess)</source><source>JSTOR</source><creator>MUKHIN, E. ; YOUNG, C. A. S.</creator><creatorcontrib>MUKHIN, E. ; YOUNG, C. A. S.</creatorcontrib><description>Let g be a simple Lie algebra. We consider the category $\hat{\mathrm{O}}$ of those modules over the affine quantum group ${\mathrm{U}}_{\mathrm{q}}\left(\hat{\mathrm{g}}\right)$ whose ${\mathrm{U}}_{\mathrm{q}}\left(\mathrm{g}\right)$-weights have finite multiplicity and lie in a finite union of cones generated by negative roots. We show that many properties of the category of the finite-dimensional representations naturally extend to the category $\hat{\mathrm{O}}$. In particular, we define the minimal affinizations of parabolic Verma modules. In types ABCFG we classify these minimal affinizations and conjecture a Weyl denominator type formula for their characters.</description><identifier>ISSN: 0002-9947</identifier><identifier>DOI: 10.1090/S0002-9947-2014-06039-X</identifier><language>eng</language><publisher>American Mathematical Society</publisher><ispartof>Transactions of the American Mathematical Society, 2014-09, Vol.366 (9), p.4815-4847</ispartof><rights>2014 American Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23813967$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23813967$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>MUKHIN, E.</creatorcontrib><creatorcontrib>YOUNG, C. A. S.</creatorcontrib><title>AFFINIZATION OF CATEGORY O FOR QUANTUM GROUPS</title><title>Transactions of the American Mathematical Society</title><description>Let g be a simple Lie algebra. We consider the category $\hat{\mathrm{O}}$ of those modules over the affine quantum group ${\mathrm{U}}_{\mathrm{q}}\left(\hat{\mathrm{g}}\right)$ whose ${\mathrm{U}}_{\mathrm{q}}\left(\mathrm{g}\right)$-weights have finite multiplicity and lie in a finite union of cones generated by negative roots. We show that many properties of the category of the finite-dimensional representations naturally extend to the category $\hat{\mathrm{O}}$. In particular, we define the minimal affinizations of parabolic Verma modules. In types ABCFG we classify these minimal affinizations and conjecture a Weyl denominator type formula for their characters.</description><issn>0002-9947</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9jE1KxDAYQLNQcJzxCGIuEP3SNH_LUKa1MDZjJwV1M6RJAxZFaWfjNdx7AU_nERQUV4_Hg4fQBYVLChqudgCQEa1zSTKgOQEBTJO7I7T4DyfodJ7HH4VciQUCU5Z1Uz8YV9sG2xIXxq0r297jr4_3T1zaFt92pnHdDa5a2213K3Sc_NM8nP1xiVy5dsU12diqLsyGjDo7kIFKL3KWQvJcegDOVK9UUkwHIUXqOQ0ZB8YpE73nkaoQfRiGqCD2PsjIluj8dzvOh5dp_zo9PvvpbZ8xRZkWkn0DVo1AAQ</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>MUKHIN, E.</creator><creator>YOUNG, C. A. S.</creator><general>American Mathematical Society</general><scope/></search><sort><creationdate>20140901</creationdate><title>AFFINIZATION OF CATEGORY O FOR QUANTUM GROUPS</title><author>MUKHIN, E. ; YOUNG, C. A. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j92t-e17a643fcfa57a00538b88f839c676fb51c25035136ba5d18cdaceed80dbac7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MUKHIN, E.</creatorcontrib><creatorcontrib>YOUNG, C. A. S.</creatorcontrib><jtitle>Transactions of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MUKHIN, E.</au><au>YOUNG, C. A. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AFFINIZATION OF CATEGORY O FOR QUANTUM GROUPS</atitle><jtitle>Transactions of the American Mathematical Society</jtitle><date>2014-09-01</date><risdate>2014</risdate><volume>366</volume><issue>9</issue><spage>4815</spage><epage>4847</epage><pages>4815-4847</pages><issn>0002-9947</issn><abstract>Let g be a simple Lie algebra. We consider the category $\hat{\mathrm{O}}$ of those modules over the affine quantum group ${\mathrm{U}}_{\mathrm{q}}\left(\hat{\mathrm{g}}\right)$ whose ${\mathrm{U}}_{\mathrm{q}}\left(\mathrm{g}\right)$-weights have finite multiplicity and lie in a finite union of cones generated by negative roots. We show that many properties of the category of the finite-dimensional representations naturally extend to the category $\hat{\mathrm{O}}$. In particular, we define the minimal affinizations of parabolic Verma modules. In types ABCFG we classify these minimal affinizations and conjecture a Weyl denominator type formula for their characters.</abstract><pub>American Mathematical Society</pub><doi>10.1090/S0002-9947-2014-06039-X</doi><tpages>33</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9947 |
ispartof | Transactions of the American Mathematical Society, 2014-09, Vol.366 (9), p.4815-4847 |
issn | 0002-9947 |
language | eng |
recordid | cdi_jstor_primary_23813967 |
source | JSTOR Mathematics and Statistics; American Mathematical Society Journals and Series; Free E-Journal (出版社公開部分のみ); American Mathematical Society Publications (Freely Accessible)(OpenAccess); JSTOR |
title | AFFINIZATION OF CATEGORY O FOR QUANTUM GROUPS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A47%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AFFINIZATION%20OF%20CATEGORY%20O%20FOR%20QUANTUM%20GROUPS&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.au=MUKHIN,%20E.&rft.date=2014-09-01&rft.volume=366&rft.issue=9&rft.spage=4815&rft.epage=4847&rft.pages=4815-4847&rft.issn=0002-9947&rft_id=info:doi/10.1090/S0002-9947-2014-06039-X&rft_dat=%3Cjstor%3E23813967%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=23813967&rfr_iscdi=true |