AFFINIZATION OF CATEGORY O FOR QUANTUM GROUPS
Let g be a simple Lie algebra. We consider the category $\hat{\mathrm{O}}$ of those modules over the affine quantum group ${\mathrm{U}}_{\mathrm{q}}\left(\hat{\mathrm{g}}\right)$ whose ${\mathrm{U}}_{\mathrm{q}}\left(\mathrm{g}\right)$-weights have finite multiplicity and lie in a finite union of co...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 2014-09, Vol.366 (9), p.4815-4847 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let g be a simple Lie algebra. We consider the category $\hat{\mathrm{O}}$ of those modules over the affine quantum group ${\mathrm{U}}_{\mathrm{q}}\left(\hat{\mathrm{g}}\right)$ whose ${\mathrm{U}}_{\mathrm{q}}\left(\mathrm{g}\right)$-weights have finite multiplicity and lie in a finite union of cones generated by negative roots. We show that many properties of the category of the finite-dimensional representations naturally extend to the category $\hat{\mathrm{O}}$. In particular, we define the minimal affinizations of parabolic Verma modules. In types ABCFG we classify these minimal affinizations and conjecture a Weyl denominator type formula for their characters. |
---|---|
ISSN: | 0002-9947 |
DOI: | 10.1090/S0002-9947-2014-06039-X |