PROPER TWIN-TRIANGULAR G a -ACTIONS ON A 4 ARE TRANSLATIONS

An additive group action on an affine 3-space over a complex Dedekind domain A is said to be twin-triangular if it is generated by a locally nilpotent derivation of A[y, z 1 , z 2 ] of the form r∂ y +p 1 (y)∂ z1 +p 2 (y)∂ z2 , where r ∈ A and p 1 ,p 2 ∈ A[y]. We show that these actions are translati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2014-05, Vol.142 (5), p.1513-1526
Hauptverfasser: DUBOULOZ, ADRIEN, FINSTON, DAVID R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1526
container_issue 5
container_start_page 1513
container_title Proceedings of the American Mathematical Society
container_volume 142
creator DUBOULOZ, ADRIEN
FINSTON, DAVID R.
description An additive group action on an affine 3-space over a complex Dedekind domain A is said to be twin-triangular if it is generated by a locally nilpotent derivation of A[y, z 1 , z 2 ] of the form r∂ y +p 1 (y)∂ z1 +p 2 (y)∂ z2 , where r ∈ A and p 1 ,p 2 ∈ A[y]. We show that these actions are translations if and only if they are proper. Our approach avoids the computation of rings of invariants and focuses more on the nature of geometric quotients for such actions.
format Article
fullrecord <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_23808382</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23808382</jstor_id><sourcerecordid>23808382</sourcerecordid><originalsourceid>FETCH-jstor_primary_238083823</originalsourceid><addsrcrecordid>eNpjYuA0NLCw0DWzMDJjYeA0MDAw0rW0NLbkYOAqLs4Ccg0tTcw5GRwDgvwDXIMUQsI9_XRDgjwd_dxDfRyDFD7MnbJPIVFB19E5xNPfL1jB3w8ktEPBRMExyFUhJMjRL9jHESzFw8CalphTnMoLpbkZZN1cQ5w9dLOKS_KL4guKMnMTiyrjjYwtDCyMLYyMCckDADHCMxY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>PROPER TWIN-TRIANGULAR G a -ACTIONS ON A 4 ARE TRANSLATIONS</title><source>American Mathematical Society Publications (Freely Accessible)</source><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>American Mathematical Society Publications</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>DUBOULOZ, ADRIEN ; FINSTON, DAVID R.</creator><creatorcontrib>DUBOULOZ, ADRIEN ; FINSTON, DAVID R.</creatorcontrib><description>An additive group action on an affine 3-space over a complex Dedekind domain A is said to be twin-triangular if it is generated by a locally nilpotent derivation of A[y, z 1 , z 2 ] of the form r∂ y +p 1 (y)∂ z1 +p 2 (y)∂ z2 , where r ∈ A and p 1 ,p 2 ∈ A[y]. We show that these actions are translations if and only if they are proper. Our approach avoids the computation of rings of invariants and focuses more on the nature of geometric quotients for such actions.</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><language>eng</language><publisher>AMERICAN MATHEMATICAL SOCIETY</publisher><subject>Algebra ; Equivalence relation ; Geometric translations ; Mathematical rings ; Mathematical triviality ; Morphisms ; Polynomials ; Quotients ; Universal algebra ; Zariski topologies</subject><ispartof>Proceedings of the American Mathematical Society, 2014-05, Vol.142 (5), p.1513-1526</ispartof><rights>2014 American Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23808382$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23808382$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,58016,58020,58249,58253</link.rule.ids></links><search><creatorcontrib>DUBOULOZ, ADRIEN</creatorcontrib><creatorcontrib>FINSTON, DAVID R.</creatorcontrib><title>PROPER TWIN-TRIANGULAR G a -ACTIONS ON A 4 ARE TRANSLATIONS</title><title>Proceedings of the American Mathematical Society</title><description>An additive group action on an affine 3-space over a complex Dedekind domain A is said to be twin-triangular if it is generated by a locally nilpotent derivation of A[y, z 1 , z 2 ] of the form r∂ y +p 1 (y)∂ z1 +p 2 (y)∂ z2 , where r ∈ A and p 1 ,p 2 ∈ A[y]. We show that these actions are translations if and only if they are proper. Our approach avoids the computation of rings of invariants and focuses more on the nature of geometric quotients for such actions.</description><subject>Algebra</subject><subject>Equivalence relation</subject><subject>Geometric translations</subject><subject>Mathematical rings</subject><subject>Mathematical triviality</subject><subject>Morphisms</subject><subject>Polynomials</subject><subject>Quotients</subject><subject>Universal algebra</subject><subject>Zariski topologies</subject><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpjYuA0NLCw0DWzMDJjYeA0MDAw0rW0NLbkYOAqLs4Ccg0tTcw5GRwDgvwDXIMUQsI9_XRDgjwd_dxDfRyDFD7MnbJPIVFB19E5xNPfL1jB3w8ktEPBRMExyFUhJMjRL9jHESzFw8CalphTnMoLpbkZZN1cQ5w9dLOKS_KL4guKMnMTiyrjjYwtDCyMLYyMCckDADHCMxY</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>DUBOULOZ, ADRIEN</creator><creator>FINSTON, DAVID R.</creator><general>AMERICAN MATHEMATICAL SOCIETY</general><scope/></search><sort><creationdate>20140501</creationdate><title>PROPER TWIN-TRIANGULAR G a -ACTIONS ON A 4 ARE TRANSLATIONS</title><author>DUBOULOZ, ADRIEN ; FINSTON, DAVID R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-jstor_primary_238083823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algebra</topic><topic>Equivalence relation</topic><topic>Geometric translations</topic><topic>Mathematical rings</topic><topic>Mathematical triviality</topic><topic>Morphisms</topic><topic>Polynomials</topic><topic>Quotients</topic><topic>Universal algebra</topic><topic>Zariski topologies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DUBOULOZ, ADRIEN</creatorcontrib><creatorcontrib>FINSTON, DAVID R.</creatorcontrib><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DUBOULOZ, ADRIEN</au><au>FINSTON, DAVID R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PROPER TWIN-TRIANGULAR G a -ACTIONS ON A 4 ARE TRANSLATIONS</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><date>2014-05-01</date><risdate>2014</risdate><volume>142</volume><issue>5</issue><spage>1513</spage><epage>1526</epage><pages>1513-1526</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><abstract>An additive group action on an affine 3-space over a complex Dedekind domain A is said to be twin-triangular if it is generated by a locally nilpotent derivation of A[y, z 1 , z 2 ] of the form r∂ y +p 1 (y)∂ z1 +p 2 (y)∂ z2 , where r ∈ A and p 1 ,p 2 ∈ A[y]. We show that these actions are translations if and only if they are proper. Our approach avoids the computation of rings of invariants and focuses more on the nature of geometric quotients for such actions.</abstract><pub>AMERICAN MATHEMATICAL SOCIETY</pub></addata></record>
fulltext fulltext
identifier ISSN: 0002-9939
ispartof Proceedings of the American Mathematical Society, 2014-05, Vol.142 (5), p.1513-1526
issn 0002-9939
1088-6826
language eng
recordid cdi_jstor_primary_23808382
source American Mathematical Society Publications (Freely Accessible); JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; American Mathematical Society Publications; EZB-FREE-00999 freely available EZB journals
subjects Algebra
Equivalence relation
Geometric translations
Mathematical rings
Mathematical triviality
Morphisms
Polynomials
Quotients
Universal algebra
Zariski topologies
title PROPER TWIN-TRIANGULAR G a -ACTIONS ON A 4 ARE TRANSLATIONS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T06%3A32%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PROPER%20TWIN-TRIANGULAR%20G%20a%20-ACTIONS%20ON%20A%204%20ARE%20TRANSLATIONS&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=DUBOULOZ,%20ADRIEN&rft.date=2014-05-01&rft.volume=142&rft.issue=5&rft.spage=1513&rft.epage=1526&rft.pages=1513-1526&rft.issn=0002-9939&rft.eissn=1088-6826&rft_id=info:doi/&rft_dat=%3Cjstor%3E23808382%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=23808382&rfr_iscdi=true