PROPER TWIN-TRIANGULAR G a -ACTIONS ON A 4 ARE TRANSLATIONS
An additive group action on an affine 3-space over a complex Dedekind domain A is said to be twin-triangular if it is generated by a locally nilpotent derivation of A[y, z 1 , z 2 ] of the form r∂ y +p 1 (y)∂ z1 +p 2 (y)∂ z2 , where r ∈ A and p 1 ,p 2 ∈ A[y]. We show that these actions are translati...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2014-05, Vol.142 (5), p.1513-1526 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An additive group action on an affine 3-space over a complex Dedekind domain A is said to be twin-triangular if it is generated by a locally nilpotent derivation of A[y, z
1
, z
2
] of the form r∂
y
+p
1
(y)∂
z1
+p
2
(y)∂
z2
, where r ∈ A and p
1
,p
2
∈ A[y]. We show that these actions are translations if and only if they are proper. Our approach avoids the computation of rings of invariants and focuses more on the nature of geometric quotients for such actions. |
---|---|
ISSN: | 0002-9939 1088-6826 |