Vast Portfolio Selection With Gross-Exposure Constraints

This article introduces the large portfolio selection using gross-exposure constraints. It shows that with gross-exposure constraints, the empirically selected optimal portfolios based on estimated covariance matrices have similar performance to the theoretical optimal ones and there is no error acc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Statistical Association 2012-06, Vol.107 (498), p.592-606
Hauptverfasser: Fan, Jianqing, Zhang, Jingjin, Yu, Ke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article introduces the large portfolio selection using gross-exposure constraints. It shows that with gross-exposure constraints, the empirically selected optimal portfolios based on estimated covariance matrices have similar performance to the theoretical optimal ones and there is no error accumulation effect from estimation of vast covariance matrices. This gives theoretical justification to the empirical results by Jagannathan and Ma. It also shows that the no-short-sale portfolio can be improved by allowing some short positions. The applications to portfolio selection, tracking, and improvements are also addressed. The utility of our new approach is illustrated by simulation and empirical studies on the 100 Fama-French industrial portfolios and the 600 stocks randomly selected from Russell 3000.
ISSN:1537-274X
0162-1459
1537-274X
DOI:10.1080/01621459.2012.682825