The connective constant of the honeycomb lattice equals √2 + √2

We provide the first mathematical proof that the connective constant of the hexagonal lattice is equal to √2 + √2. This value has been derived nonrigorously by B. Nienhuis in 1982, using Coulomb gas approach from theoretical physics. Our proof uses a parafermionic observable for the self-avoiding wa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of mathematics 2012-05, Vol.175 (3), p.1653-1665
Hauptverfasser: Duminil-Copin, Hugo, Smirnov, Stanislav
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We provide the first mathematical proof that the connective constant of the hexagonal lattice is equal to √2 + √2. This value has been derived nonrigorously by B. Nienhuis in 1982, using Coulomb gas approach from theoretical physics. Our proof uses a parafermionic observable for the self-avoiding walk, which satisfies a half of the discrete Cauchy-Riemann relations. Establishing the other half of the relations (which conjecturally holds in the scaling limit) would also imply convergence of the self-avoiding walk to SLE(8/3).
ISSN:0003-486X
DOI:10.4007/annals.2012.175.3.14