Continuous-trace groupoid C^-algebras. III

Suppose that {\groupoidfont G} is a second countable locally compact groupoid with a Haar system and with abelian isotropy. We show that the groupoid C^{\displaystyle *}-algebra \mathcs({\groupoidfont G},\lambda) has continuous trace if and only if there is a Haar system for the isotropy groupoid {\...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 1996-09, Vol.348 (9), p.3621-3641
Hauptverfasser: Muhly, Paul S., Renault, Jean N., Williams, Dana P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Suppose that {\groupoidfont G} is a second countable locally compact groupoid with a Haar system and with abelian isotropy. We show that the groupoid C^{\displaystyle *}-algebra \mathcs({\groupoidfont G},\lambda) has continuous trace if and only if there is a Haar system for the isotropy groupoid {\groupoidfont A} and the action of the quotient groupoid {\groupoidfont G}/{\groupoidfont A} is proper on the unit space of {\groupoidfont G}.
ISSN:0002-9947
1088-6850
DOI:10.1090/S0002-9947-96-01610-8