Continuous-trace groupoid C^-algebras. III
Suppose that {\groupoidfont G} is a second countable locally compact groupoid with a Haar system and with abelian isotropy. We show that the groupoid C^{\displaystyle *}-algebra \mathcs({\groupoidfont G},\lambda) has continuous trace if and only if there is a Haar system for the isotropy groupoid {\...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 1996-09, Vol.348 (9), p.3621-3641 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Suppose that {\groupoidfont G} is a second countable locally compact groupoid with a Haar system and with abelian isotropy. We show that the groupoid C^{\displaystyle *}-algebra \mathcs({\groupoidfont G},\lambda) has continuous trace if and only if there is a Haar system for the isotropy groupoid {\groupoidfont A} and the action of the quotient groupoid {\groupoidfont G}/{\groupoidfont A} is proper on the unit space of {\groupoidfont G}. |
---|---|
ISSN: | 0002-9947 1088-6850 |
DOI: | 10.1090/S0002-9947-96-01610-8 |