Smith Equivalent Aut(A₆)-Representations Are Isomorphic

Many authors, e.g. M. Atiyah, R. Bott, J. Milnor, G. Bredon, S. Cappell, J. Shaneson, C. Sanchez, T. Petrie, E. Laitinen, K. Pawałowski, R. Solomon and so on, studied Smith equivalent representations for finite groups. Observing their results, E. Laitinen conjectured that nonisomorphic Smith equival...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2008-10, Vol.136 (10), p.3683-3688
1. Verfasser: Morimoto, Masaharu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many authors, e.g. M. Atiyah, R. Bott, J. Milnor, G. Bredon, S. Cappell, J. Shaneson, C. Sanchez, T. Petrie, E. Laitinen, K. Pawałowski, R. Solomon and so on, studied Smith equivalent representations for finite groups. Observing their results, E. Laitinen conjectured that nonisomorphic Smith equivalent real G-modules exist if $a_{G}$ , the number of real conjugacy classes of elements not of prime power order in G, is greater than or equal to 2. This paper shows that in the case G = Aut(A₆), $a_{G}=2$ any two Smith equivalent real G-modules are isomorphic.
ISSN:0002-9939
1088-6826
DOI:10.1090/S0002-9939-08-08891-6