Axisymmetric Solutions of the Equations of Motion of Non-Linear Viscous Flows

The Navier-Stokes equations of motion of viscous fluids arise from the assumption of a linear constitutive relation between the stress and the rate of strain tensors. By postulating the non-linear constitutive relation$t_{ij}=-p\ \delta _{ij}+2\mu d_{ij}+2\mu _{c}d_{ia}d_{aj}$between the stress and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences 1961-01, Vol.62, p.55-61
1. Verfasser: Rao, S. K. Lakshmana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Navier-Stokes equations of motion of viscous fluids arise from the assumption of a linear constitutive relation between the stress and the rate of strain tensors. By postulating the non-linear constitutive relation$t_{ij}=-p\ \delta _{ij}+2\mu d_{ij}+2\mu _{c}d_{ia}d_{aj}$between the stress and the rate of strain tensors, one arrives at the equations of motion of non-Newtonian viscous liquids in which there is a coefficient of cross viscosity$\mu _{c}$present besides the usual coefficient μ. We obtain here some axisymmetric solutions of the equations of non-Newtonian viscous motion and point out certain solutions which are admissible in both the two distinct cases of linear and non-linear viscous flow.
ISSN:0035-8975