Multinomial coefficients modulo a prime
We say that the multinomial coefficient (m.c.) (j_1,\dots, j_l)=n!/ (j_1!\cdots j_l!) has order l and power n=j_1+\cdots+j_l. Let G(n,l,p) be the number of m.c. that are not divisible by p and have order l with powers which are not larger than n. If \theta =\log_p(l,p-1) and [ q_{l,p}^{(r)}=\min_{p^...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 1999-02, Vol.127 (2), p.349-353 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We say that the multinomial coefficient (m.c.) (j_1,\dots, j_l)=n!/ (j_1!\cdots j_l!) has order l and power n=j_1+\cdots+j_l. Let G(n,l,p) be the number of m.c. that are not divisible by p and have order l with powers which are not larger than n. If \theta =\log_p(l,p-1) and [ q_{l,p}^{(r)}=\min_{p^r\le n |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/S0002-9939-99-05079-0 |