ON THE STEEPEST DESCENT APPROXIMATION TO SOLUTIONS OF NONLINEAR STRONGLY ACCRETIVE OPERATOR EQUATIONS

A new inequality of Banach spaces and the asymptotic stability theory on the equilibrium point of a certain type of initial value problem are used to establish the global convergence of the steepest descent approximation for accretive operator equations. Let X be a real uniformly smooth Banach space...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational mathematics 1992-10, Vol.10, p.173-182
Hauptverfasser: Zong-ben, Xu, Bo, Zhang, Roach, G.F.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new inequality of Banach spaces and the asymptotic stability theory on the equilibrium point of a certain type of initial value problem are used to establish the global convergence of the steepest descent approximation for accretive operator equations. Let X be a real uniformly smooth Banach space and A: X ➝ X be a demicontinuous, strongly accretive operator. It is proved under suitable assumptions on an that the iterative process xn+1 = xn - anAxn, x₀ ϵ X, n = 0, 1, 2,··· converges strongly to the unique solution of the equation Ax = 0. The theorem obtained generalises and improves several existing results.
ISSN:0254-9409
1991-7139