OPTIMAL AND PRESSURE-INDEPENDENT L2 VELOCITY ERROR ESTIMATES FOR A MODIFIED CROUZEIX-RAVIART STOKES ELEMENT WITH BDM RECONSTRUCTIONS

Nearly all inf-sup stable mixed finite elements for the incompressible Stokes equations relax the divergence constraint. The price to pay is that a priori estimates for the ve- locity error become pressure-dependent, while divergence-free mixed finite elements de- liver pressure-independent estimate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational mathematics 2015-03, Vol.33 (2), p.191-208
Hauptverfasser: Brennecke, C., Linke, A., Merdon, C., Schöberl, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nearly all inf-sup stable mixed finite elements for the incompressible Stokes equations relax the divergence constraint. The price to pay is that a priori estimates for the ve- locity error become pressure-dependent, while divergence-free mixed finite elements de- liver pressure-independent estimates. A recently introduced new variational crime using lowest-order Raviart-Thomas velocity reconstructions delivers a much more robust modi- fied Crouzeix-Raviart element, obeying an optimal pressure-independent discrete H1 ve- locity estimate. Refining this approach, a more sophisticated variational crime employing the lowest-order BDM element is proposed, which also allows proving an optimal pressure- independent L2 velocity error. Numerical examples confirm the analysis and demonstrate the improved robustness in the Navier-Stokes case.
ISSN:0254-9409
1991-7139