A New Proof of Cavalieri's Quadrature Formula

In 1635, Bonaventura Cavalieri (1598-1647) published his "Geometria indivisibilibus," in which he outlined a method to compute areas and volumes by subdividing regions into infinite numbers of infinitesimal slices and suitably rearranging. Wildberger interprets later mathematicians' p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The American mathematical monthly 2002-11, Vol.109 (9), p.843-845
1. Verfasser: Wildberger, N. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In 1635, Bonaventura Cavalieri (1598-1647) published his "Geometria indivisibilibus," in which he outlined a method to compute areas and volumes by subdividing regions into infinite numbers of infinitesimal slices and suitably rearranging. Wildberger interprets later mathematicians' proofs of this as utilizing a formula to evaluate a Riemann sum. Wildberger offers a proof of Cavalieri's formula that uses the (hidden) symmetry of the function "xn" and the Binomial Theorem, sidestepping the use of Riemann sums altogether.
ISSN:0002-9890
1930-0972
DOI:10.1080/00029890.2002.11919920