A New Proof of Cavalieri's Quadrature Formula
In 1635, Bonaventura Cavalieri (1598-1647) published his "Geometria indivisibilibus," in which he outlined a method to compute areas and volumes by subdividing regions into infinite numbers of infinitesimal slices and suitably rearranging. Wildberger interprets later mathematicians' p...
Gespeichert in:
Veröffentlicht in: | The American mathematical monthly 2002-11, Vol.109 (9), p.843-845 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In 1635, Bonaventura Cavalieri (1598-1647) published his "Geometria indivisibilibus," in which he outlined a method to compute areas and volumes by subdividing regions into infinite numbers of infinitesimal slices and suitably rearranging. Wildberger interprets later mathematicians' proofs of this as utilizing a formula to evaluate a Riemann sum. Wildberger offers a proof of Cavalieri's formula that uses the (hidden) symmetry of the function "xn" and the Binomial Theorem, sidestepping the use of Riemann sums altogether. |
---|---|
ISSN: | 0002-9890 1930-0972 |
DOI: | 10.1080/00029890.2002.11919920 |