Imputation of Missing Values When the Probability of Response Depends on the Variable Being Imputed

A method is developed for imputing missing values when the probability of response depends upon the variable being imputed. The missing data problem is viewed as one of parameter estimation in a regression model with stochastic censoring of the dependent variable. The prediction approach to imputati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Statistical Association 1982-06, Vol.77 (378), p.251-261
Hauptverfasser: Greenlees, John S., Reece, William S., Zieschang, Kimberly D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A method is developed for imputing missing values when the probability of response depends upon the variable being imputed. The missing data problem is viewed as one of parameter estimation in a regression model with stochastic censoring of the dependent variable. The prediction approach to imputation is used to solve this estimation problem. Wages and salaries are imputed to non-respondents in the Current Population Survey and the results are compared to the nonrespondents' IRS wage and salary data. The stochastic censoring approach gives improved results relative to a prediction approach that ignores the response mechanism.
ISSN:0162-1459
1537-274X
DOI:10.1080/01621459.1982.10477793