Advocate Scoring for Unbiased Information
People often form opinions or make decisions after exposure to information provided by advocates. A continuing problem is the identification of procedures which lead to better balance in such information. Scoring of advocates through competition in statistically identical tasks is one approach to co...
Gespeichert in:
Veröffentlicht in: | Journal of the American Statistical Association 1975-03, Vol.70 (349), p.15-22 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 22 |
---|---|
container_issue | 349 |
container_start_page | 15 |
container_title | Journal of the American Statistical Association |
container_volume | 70 |
creator | Warner, Stanley L. |
description | People often form opinions or make decisions after exposure to information provided by advocates. A continuing problem is the identification of procedures which lead to better balance in such information. Scoring of advocates through competition in statistically identical tasks is one approach to control. Shannon's [7] concept of information in a Bayesian framework is used for illustrative estimation models, and an experiment involving public opinion in an expressway controversy provides an example. |
doi_str_mv | 10.1080/01621459.1975.10480254 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_jstor_primary_10_2307_2285369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2285369</jstor_id><sourcerecordid>2285369</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-e705014594eab3893c3100dd297435360d4c5a4ae10cead4fbd68504b71349a93</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOKd_QQp640XnyVeTXo7hx2DghQ68C2mSSsvWzKRT9u9NqQPvzE3I4XnzHh6ErjHMMEi4B1wQzHg5w6XgacQkEM5O0ARzKnIi2PspmgxQPlDn6CLGFtIRUk7Q3dx-eaN7l70aH5ruI6t9yNZd1ejobLbs0nOr-8Z3l-is1pvorn7vKVo_PrwtnvPVy9NyMV_lhuKiz50ADkMRc7qisqRpDGAtKQWjnBZgmeGaaYfBOG1ZXdlCcmCVwJSVuqRTdDP-uwv-c-9ir1q_D12qVJhiLEEQiRNVjJQJPsbgarULzVaHg8KgBi3qqEUNWtRRSwrejsE29j78TREKQhEi05LDFvMRa0YD3z5srOr1YeNDHXRnmqjoP1U_kVJyeg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1311807281</pqid></control><display><type>article</type><title>Advocate Scoring for Unbiased Information</title><source>Jstor Complete Legacy</source><source>Periodicals Index Online</source><source>JSTOR Mathematics & Statistics</source><creator>Warner, Stanley L.</creator><creatorcontrib>Warner, Stanley L.</creatorcontrib><description>People often form opinions or make decisions after exposure to information provided by advocates. A continuing problem is the identification of procedures which lead to better balance in such information. Scoring of advocates through competition in statistically identical tasks is one approach to control. Shannon's [7] concept of information in a Bayesian framework is used for illustrative estimation models, and an experiment involving public opinion in an expressway controversy provides an example.</description><identifier>ISSN: 0162-1459</identifier><identifier>EISSN: 1537-274X</identifier><identifier>DOI: 10.1080/01621459.1975.10480254</identifier><language>eng</language><publisher>Washington: Taylor & Francis Group</publisher><subject>Applications ; Applied statistics ; Estimation bias ; Expressways ; Information economics ; Information resources ; Least squares ; Logarithms ; Natural logarithms ; Population estimates ; Proportions</subject><ispartof>Journal of the American Statistical Association, 1975-03, Vol.70 (349), p.15-22</ispartof><rights>Copyright Taylor & Francis Group, LLC 1975</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-e705014594eab3893c3100dd297435360d4c5a4ae10cead4fbd68504b71349a93</citedby><cites>FETCH-LOGICAL-c316t-e705014594eab3893c3100dd297435360d4c5a4ae10cead4fbd68504b71349a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2285369$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2285369$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27848,27903,27904,57995,57999,58228,58232</link.rule.ids></links><search><creatorcontrib>Warner, Stanley L.</creatorcontrib><title>Advocate Scoring for Unbiased Information</title><title>Journal of the American Statistical Association</title><description>People often form opinions or make decisions after exposure to information provided by advocates. A continuing problem is the identification of procedures which lead to better balance in such information. Scoring of advocates through competition in statistically identical tasks is one approach to control. Shannon's [7] concept of information in a Bayesian framework is used for illustrative estimation models, and an experiment involving public opinion in an expressway controversy provides an example.</description><subject>Applications</subject><subject>Applied statistics</subject><subject>Estimation bias</subject><subject>Expressways</subject><subject>Information economics</subject><subject>Information resources</subject><subject>Least squares</subject><subject>Logarithms</subject><subject>Natural logarithms</subject><subject>Population estimates</subject><subject>Proportions</subject><issn>0162-1459</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1975</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNqFkF1LwzAUhoMoOKd_QQp640XnyVeTXo7hx2DghQ68C2mSSsvWzKRT9u9NqQPvzE3I4XnzHh6ErjHMMEi4B1wQzHg5w6XgacQkEM5O0ARzKnIi2PspmgxQPlDn6CLGFtIRUk7Q3dx-eaN7l70aH5ruI6t9yNZd1ejobLbs0nOr-8Z3l-is1pvorn7vKVo_PrwtnvPVy9NyMV_lhuKiz50ADkMRc7qisqRpDGAtKQWjnBZgmeGaaYfBOG1ZXdlCcmCVwJSVuqRTdDP-uwv-c-9ir1q_D12qVJhiLEEQiRNVjJQJPsbgarULzVaHg8KgBi3qqEUNWtRRSwrejsE29j78TREKQhEi05LDFvMRa0YD3z5srOr1YeNDHXRnmqjoP1U_kVJyeg</recordid><startdate>19750301</startdate><enddate>19750301</enddate><creator>Warner, Stanley L.</creator><general>Taylor & Francis Group</general><general>American Statistical Association</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JRZRW</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope></search><sort><creationdate>19750301</creationdate><title>Advocate Scoring for Unbiased Information</title><author>Warner, Stanley L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-e705014594eab3893c3100dd297435360d4c5a4ae10cead4fbd68504b71349a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1975</creationdate><topic>Applications</topic><topic>Applied statistics</topic><topic>Estimation bias</topic><topic>Expressways</topic><topic>Information economics</topic><topic>Information resources</topic><topic>Least squares</topic><topic>Logarithms</topic><topic>Natural logarithms</topic><topic>Population estimates</topic><topic>Proportions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Warner, Stanley L.</creatorcontrib><collection>CrossRef</collection><collection>Periodicals Index Online Segment 35</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access & Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access & Build (Plan A) - APAC</collection><collection>Primary Sources Access & Build (Plan A) - Canada</collection><collection>Primary Sources Access & Build (Plan A) - West</collection><collection>Primary Sources Access & Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - Midwest</collection><collection>Primary Sources Access & Build (Plan A) - North Central</collection><collection>Primary Sources Access & Build (Plan A) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Warner, Stanley L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advocate Scoring for Unbiased Information</atitle><jtitle>Journal of the American Statistical Association</jtitle><date>1975-03-01</date><risdate>1975</risdate><volume>70</volume><issue>349</issue><spage>15</spage><epage>22</epage><pages>15-22</pages><issn>0162-1459</issn><eissn>1537-274X</eissn><abstract>People often form opinions or make decisions after exposure to information provided by advocates. A continuing problem is the identification of procedures which lead to better balance in such information. Scoring of advocates through competition in statistically identical tasks is one approach to control. Shannon's [7] concept of information in a Bayesian framework is used for illustrative estimation models, and an experiment involving public opinion in an expressway controversy provides an example.</abstract><cop>Washington</cop><pub>Taylor & Francis Group</pub><doi>10.1080/01621459.1975.10480254</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0162-1459 |
ispartof | Journal of the American Statistical Association, 1975-03, Vol.70 (349), p.15-22 |
issn | 0162-1459 1537-274X |
language | eng |
recordid | cdi_jstor_primary_10_2307_2285369 |
source | Jstor Complete Legacy; Periodicals Index Online; JSTOR Mathematics & Statistics |
subjects | Applications Applied statistics Estimation bias Expressways Information economics Information resources Least squares Logarithms Natural logarithms Population estimates Proportions |
title | Advocate Scoring for Unbiased Information |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A30%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advocate%20Scoring%20for%20Unbiased%20Information&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Warner,%20Stanley%20L.&rft.date=1975-03-01&rft.volume=70&rft.issue=349&rft.spage=15&rft.epage=22&rft.pages=15-22&rft.issn=0162-1459&rft.eissn=1537-274X&rft_id=info:doi/10.1080/01621459.1975.10480254&rft_dat=%3Cjstor_proqu%3E2285369%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1311807281&rft_id=info:pmid/&rft_jstor_id=2285369&rfr_iscdi=true |