A Local Bifurcation Theorem for C1-Fredholm Maps
The Krasnosel'skii Bifurcation Theorem is generalized to C1-Fredholm maps. Let X and Y be Banach spaces, F: R × X → Y be C1-Fredholm of index 1 and$F(\lambda, 0) \equiv 0$. If$I \subseteq R$is a closed, bounded interval at whose endpoints ∂ F/∂ x ∂ F/∂ x (λ, 0) is invertible, and the parity of...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 1990-08, Vol.109 (4), p.995-1002 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Krasnosel'skii Bifurcation Theorem is generalized to C1-Fredholm maps. Let X and Y be Banach spaces, F: R × X → Y be C1-Fredholm of index 1 and$F(\lambda, 0) \equiv 0$. If$I \subseteq R$is a closed, bounded interval at whose endpoints ∂ F/∂ x ∂ F/∂ x (λ, 0) is invertible, and the parity of ∂ F/∂ x (λ, 0) on I is -1, then I contains a bifurcation point of the equation F(λ, x) = 0. At isolated potential bifurcation points, this sufficient condition for bifurcation is also necessary. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.2307/2048129 |