Most Riesz Product Measures are Lp-Improving
A Borel measure μ on a compact abelian group G is Lp-improving if, given$p > 1$, there is a$q = q(p, \mu) > p$and a$K = K(p, q, \mu) > 0$such that |μ* f|q≤ K|f|pfor each f in Lp(G). Here the Lp-improving Riesz product measures on infinite compact abelian groups are characterized by means of...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 1986-06, Vol.97 (2), p.291-295 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A Borel measure μ on a compact abelian group G is Lp-improving if, given$p > 1$, there is a$q = q(p, \mu) > p$and a$K = K(p, q, \mu) > 0$such that |μ* f|q≤ K|f|pfor each f in Lp(G). Here the Lp-improving Riesz product measures on infinite compact abelian groups are characterized by means of their Fourier transforms. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.2307/2046516 |