A Characterization of Order Topologies by Means of Minimal T0-Topologies

In this article we give a purely topological characterization for a topology J on a set X to be the order topology with respect to some linear order R on X, as follows. A topology J on a set X is an order topology$\operatorname{iff} (X, \mathfrak J)$is a T1-space and J is the least upper bound of tw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 1971-01, Vol.27 (1), p.161-167
Hauptverfasser: Thron, W. J., Zimmerman, Susan J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article we give a purely topological characterization for a topology J on a set X to be the order topology with respect to some linear order R on X, as follows. A topology J on a set X is an order topology$\operatorname{iff} (X, \mathfrak J)$is a T1-space and J is the least upper bound of two minimal T0-topologies [Theorem 1]. From this we deduce a purely topological description of the usual topology on the set of all real numbers. That is, a topological space (X, J) is homeomorphic to the reals with the usual topology$\operatorname{iff} (X, \mathfrak J)$is a connected, separable, T1-space, and J is the least upper bound of two noncompact minimal T0-topologies [Theorem 2].
ISSN:0002-9939
1088-6826