A Characterization of Order Topologies by Means of Minimal T0-Topologies
In this article we give a purely topological characterization for a topology J on a set X to be the order topology with respect to some linear order R on X, as follows. A topology J on a set X is an order topology$\operatorname{iff} (X, \mathfrak J)$is a T1-space and J is the least upper bound of tw...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 1971-01, Vol.27 (1), p.161-167 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article we give a purely topological characterization for a topology J on a set X to be the order topology with respect to some linear order R on X, as follows. A topology J on a set X is an order topology$\operatorname{iff} (X, \mathfrak J)$is a T1-space and J is the least upper bound of two minimal T0-topologies [Theorem 1]. From this we deduce a purely topological description of the usual topology on the set of all real numbers. That is, a topological space (X, J) is homeomorphic to the reals with the usual topology$\operatorname{iff} (X, \mathfrak J)$is a connected, separable, T1-space, and J is the least upper bound of two noncompact minimal T0-topologies [Theorem 2]. |
---|---|
ISSN: | 0002-9939 1088-6826 |