On H(Ωn+2Sn+1; F2)
In this paper, we study H*Ωn+2Sn+1. Here Ω X denotes the space of pointed maps S1→ X, and H*represents homology modulo 2. We show that the Eilenberg-Moore spectral sequence$\operatorname{Tor}^{\ast\ast}_{H^\ast\Omega^{n+1}_0S^{n+1}} (F_2, F_2) \Rightarrow H^\ast\Omega^{n+2}S^{n+1}$collapses, and we...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 1989-07, Vol.314 (1), p.405-420 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study H*Ωn+2Sn+1. Here Ω X denotes the space of pointed maps S1→ X, and H*represents homology modulo 2. We show that the Eilenberg-Moore spectral sequence$\operatorname{Tor}^{\ast\ast}_{H^\ast\Omega^{n+1}_0S^{n+1}} (F_2, F_2) \Rightarrow H^\ast\Omega^{n+2}S^{n+1}$collapses, and we identify the kernel of the Whitehead product map Ωn+1p*: H*Ωn+3S2n+1→ H*Ωn+1Sn. These observations yield two different descriptions of H*Ωn+2Sn+1up to extension. |
---|---|
ISSN: | 0002-9947 |