Monte Carlo Estimation of Bayesian Credible and HPD Intervals

This article considers how to estimate Bayesian credible and highest probability density (HPD) intervals for parameters of interest and provides a simple Monte Carlo approach to approximate these Bayesian intervals when a sample of the relevant parameters can be generated from their respective margi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and graphical statistics 1999-03, Vol.8 (1), p.69-92
Hauptverfasser: Chen, Ming-Hui, Shao, Qi-Man
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article considers how to estimate Bayesian credible and highest probability density (HPD) intervals for parameters of interest and provides a simple Monte Carlo approach to approximate these Bayesian intervals when a sample of the relevant parameters can be generated from their respective marginal posterior distribution using a Markov chain Monte Carlo (MCMC) sampling algorithm. We also develop a Monte Carlo method to compute HPD intervals for the parameters of interest from the desired posterior distribution using a sample from an importance sampling distribution. We apply our methodology to a Bayesian hierarchical model that has a posterior density containing analytically intractable integrals that depend on the (hyper) parameters. We further show that our methods are useful not only for calculating the HPD intervals for the parameters of interest but also for computing the HPD intervals for functions of the parameters. Necessary theory is developed and illustrative examples-including a simulation study-are given.
ISSN:1061-8600
1537-2715
DOI:10.1080/10618600.1999.10474802