Fine-scale Dispersal in a Stream Caddisfly Inferred from Spatial Autocorrelation of Microsatellite Markers

Most population genetic studies in streams infer long-term patterns of gene flow by calculating fixation indices (e.g., FST) among sampled populations. In more-recent analytical methods, the need to assign individuals to populations a priori (clustering algorithms) is relaxed, and spatial autocorrel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Freshwater science 2014-03, Vol.33 (1), p.172-180
Hauptverfasser: Yaegashi, Sakiko, Watanabe, Kozo, Monaghan, Michael T., Omura, Tatsuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Most population genetic studies in streams infer long-term patterns of gene flow by calculating fixation indices (e.g., FST) among sampled populations. In more-recent analytical methods, the need to assign individuals to populations a priori (clustering algorithms) is relaxed, and spatial autocorrelation analysis of allele frequencies (SA) is used to infer finer-scale and potentially short-term dispersal distances. We applied multiple methods to study the population genetic structure of the riverine caddisfly Stenopsyche marmorata (Trichoptera:Stenopsychidae) from 4 adjacent catchments in northeastern Japan. We genotyped larval individuals (N = 532) from 30 sites at 8 polymorphic microsatellite loci. Fixation indices suggested low levels of genetic differentiation among populations (global FST = 0.062, p < 0.01), and significant isolation-by-distance (IBD) indicated populations were in drift-migration equilibrium. Bayesian clustering separated S. marmorata into distinct upland (>250 m asl) and lowland populations, with different FST values (upland FST = 0.048, p < 0.01; lowland FST = 0.029, p < 0.01) and significant IBD only among upland populations. Allele frequencies were significantly positively autocorrelated (Moran's I > 0, p < 0.05) at distances up to 18 km along streams and up to 12 km across terrestrial habitat. These values were similar to directly observed flight distance in a single generation for this species in the field. We conclude that the multiple-method approach revealed: 1) unexpected population subdivision between upland and lowland areas that may result from local adaptation, differences in phenology, and historical colonization by multiple lineages; and 2) fine-scale estimates of dispersal that match direct observations of flight and suggest gene flow is more pronounced along water courses in this species.
ISSN:2161-9549
2161-9565
DOI:10.1086/675076