An Efficient and Optimal Filter for Identifying Point Sources in Millimeter/Submillimeter Wavelength Sky Maps

ABSTRACT A new technique for reliably identifying point sources in millimeter/submillimeter wavelength maps is presented. This method accounts for the frequency dependence of noise in the Fourier domain as well as nonuniformities in the coverage of a field. This optimal filter is an improvement over...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Publications of the Astronomical Society of the Pacific 2013-07, Vol.125 (929), p.838-848
Hauptverfasser: Perera, T. A., Wilson, G. W., Scott, K. S., Austermann, J. E., Schaar, J. R., Mancera, A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT A new technique for reliably identifying point sources in millimeter/submillimeter wavelength maps is presented. This method accounts for the frequency dependence of noise in the Fourier domain as well as nonuniformities in the coverage of a field. This optimal filter is an improvement over commonly-used matched filters that ignore coverage gradients. Treating noise variations in the Fourier domain as well as map space is traditionally viewed as a computationally intensive problem. We show that the penalty incurred in terms of computing time is quite small due to casting many of the calculations in terms of FFTs and exploiting the absence of sharp features in the noise spectra of observations. Practical aspects of implementing the optimal filter are presented in the context of data from the AzTEC bolometer camera. The advantages of using the new filter over the standard matched filter are also addressed in terms of a typical AzTEC map.
ISSN:0004-6280
1538-3873
DOI:10.1086/671756