Areas of Applied Mathematics

All calculus textbooks start withf(x):fis a function of one (real) variablex. Topics covered include limits, continuity, differentiation, and integration, with the associated notation, such as df/dx=f'(x) and$\int _{a}^{b}f(x)dx$. It is also usual to include a discussion of infinite sequences a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: P. A. Martin, James D. Meiss, Lawrence C. Evans, Rainer Kress, Peter D. Miller, Irene Fonseca, Giovanni Leoni, Nico M. Temme, E. Brian Davies, Annie Cuyt, Nicholas J. Higham, Stephen J. Wright, Ernst Hairer, Christian Lubich, Endre Süli, Bernt Øksendal, Agnès Sulem, Fadil Santosa, William W. Symes, David E. Keyes, Chandrika Kamath, Esteban Moro, David Tong, Philip Holmes, Paul Glendinning, Ian Stewart, David Griffiths, Jonathan Peter Keating, Cédric Villani, Clément Mouhot, Richard D. James, Arnd Scheel, H. K. Moffatt, David W. Hughes, Emily Shuckburgh, Ross C. McPhedran, L. B. Freund, Randall D. Kamien, Anders Rantzer, Karl Johan Åström, John G. McWhirter, Ian Proudler, Sergio Verdú, Peter Winkler, Jens Vygen, Frank Sottile, George F. R. Ellis
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:All calculus textbooks start withf(x):fis a function of one (real) variablex. Topics covered include limits, continuity, differentiation, and integration, with the associated notation, such as df/dx=f'(x) and$\int _{a}^{b}f(x)dx$. It is also usual to include a discussion of infinite sequences and series. The rigorous treatment of all these topics constitutesreal analysis. Complex analysis starts with the following question. What happens if we replacexbyz=x+ iy, wherexandyare two independent real variables and i$=\sqrt{-1}?$Answering this question leads to rich new fields of mathematics; we
DOI:10.1515/9781400874477-006