Origin and distribution of terrestrial organic matter in the NW Mediterranean (Gulf of Lions): Exploring the newly developed BIT index

The Branched and Isoprenoid Tetraether (BIT) index is based on the relative abundance of nonisoprenoidal glycerol dialkyl glycerol tetraethers (GDGTs) derived from organisms living in terrestrial environments versus a structurally related isoprenoid GDGT “crenarchaeol” produced by marine Crenarchaeo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geochemistry, geophysics, geosystems : G3 geophysics, geosystems : G3, 2006-11, Vol.7 (11), p.Q11017-n/a
Hauptverfasser: Kim, Jung-Hyun, Schouten, Stefan, Buscail, Roselyne, Ludwig, Wolfgang, Bonnin, Jérôme, Sinninghe Damsté, Jaap S., Bourrin, François
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Branched and Isoprenoid Tetraether (BIT) index is based on the relative abundance of nonisoprenoidal glycerol dialkyl glycerol tetraethers (GDGTs) derived from organisms living in terrestrial environments versus a structurally related isoprenoid GDGT “crenarchaeol” produced by marine Crenarchaeota. The BIT index varies between 0 and 1, representing marine and terrestrial organic matter (OM) end‐members, respectively (Hopmans et al.,Earth Planet. Sci. Lett., 224, 107–116, 2004). In this study, the applicability of the BIT index to trace terrestrial OM is tested in combination with other organic parameters (TOC, C/N ratio, δ13Corg, total lipid, and n‐alkane) in the Gulf of Lions, a river‐dominated continental margin of the western Mediterranean. We analyzed a variety of soils and riverbed sediments from the continent as well as surface sediments from the shelf and canyons. The BIT index in soils and riverbed sediments shows high values (>0.9), while it varies between 0.02 and 0.83 in marine sediments, decreasing seaward from the inner shelf to the slope. For marine surface sediments, high BIT values are associated with lower δ13Corg values as well as higher TOC contents and higher n‐alkane concentrations. Our results confirm that the BIT index can be applied in coastal marine environments in order to characterize terrestrial OM as proposed by Hopmans et al. (2004). Therefore the BIT index is a useful addition to the proxies presently available for studying the origin and distribution of OM in continental margins and especially valuable in multiproxy studies.
ISSN:1525-2027
1525-2027
DOI:10.1029/2006GC001306