Strain-specific priming of resistance in the red flour beetle, Tribolium castaneum
As invertebrates lack the molecular machinery employed by the vertebrate adaptive immune system, it was thought that they consequently lack the ability to produce lasting and specific immunity. However, in recent years, it has been demonstrated that the immune defence of invertebrates is by far more...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Royal Society. B, Biological sciences Biological sciences, 2009-01, Vol.276 (1654), p.145-151 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | As invertebrates lack the molecular machinery employed by the vertebrate adaptive immune system, it was thought that they consequently lack the ability to produce lasting and specific immunity. However, in recent years, it has been demonstrated that the immune defence of invertebrates is by far more complicated and specific than previously envisioned. Lasting immunity following an initial exposure that proves protection on a secondary exposure has been shown in several species of invertebrates. This phenomenon has become known as immune priming. In the cases where it is explicitly tested, this priming can also be highly specific. In this study, we used survival assays to test for specific priming of resistance in the red flour beetle, Tribolium castaneum, using bacteria of different degrees of relatedness. Our results suggest an unexpected degree of specificity that even allows for differentiation between different strains of the same bacterium. However, our findings also demonstrate that specific priming of resistance in insects may not be ubiquitous across all bacteria. |
---|---|
ISSN: | 0962-8452 1471-2954 |
DOI: | 10.1098/rspb.2008.1157 |