Current knowledge of gene flow in plants: implications for transgene flow
Plant evolutionary biologists' view of gene flow and hybridization has undergone a revolution. Twenty-five years ago, both were considered rare and largely inconsequential. Now gene flow and hybridization are known to be idiosyncratic, varying with the specific populations involved. Gene flow t...
Gespeichert in:
Veröffentlicht in: | Philosophical transactions of the Royal Society of London. Series B. Biological sciences 2003-06, Vol.358 (1434), p.1163-1170 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Plant evolutionary biologists' view of gene flow and hybridization has undergone a revolution. Twenty-five years ago, both were considered rare and largely inconsequential. Now gene flow and hybridization are known to be idiosyncratic, varying with the specific populations involved. Gene flow typically occurs at evolutionarily significant rates and at significant distances. Spontaneous hybridization occasionally has important applied consequences, such as stimulating the evolution of more aggressive invasives and increasing the extinction risk for rare species. The same problems have occurred for spontaneous hybridization between crops and their wild relatives. These new data have implications for transgenic crops: (i) for most crops, gene flow can act to introduce engineered genes into wild populations; (ii) depending on the specific engineered gene(s) and populations involved, gene flow may have the same negative impacts as those observed for traditionally improved crops; (iii) gene flow's idiosyncratic nature may frustrate management and monitoring attempts; and (iv) intercrop transgene flow, although rarely discussed, is equally worthy of study. |
---|---|
ISSN: | 0962-8436 1471-2970 |
DOI: | 10.1098/rstb.2003.1299 |