On the Product of Three Homogeneous Linear Forms and Indefinite Ternary Quadratic Forms

Isolation theorems for the minima of factorizable homogeneous ternary cubic forms and of indefinite ternary quadratic forms of a new strong type are proved. The problems whether there exist such forms with positive minima other than multiples of forms with integer coefficients are shown to be equiva...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Philosophical transactions of the Royal Society of London. Series A: Mathematical and physical sciences 1955-06, Vol.248 (940), p.73-96
Hauptverfasser: Cassels, John William Scott, Swinnerton-Dyer, H. P. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Isolation theorems for the minima of factorizable homogeneous ternary cubic forms and of indefinite ternary quadratic forms of a new strong type are proved. The problems whether there exist such forms with positive minima other than multiples of forms with integer coefficients are shown to be equivalent to problems in the geometry of numbers of a superficially different type. A contribution is made to the study of the problem whether there exist real , ijr such that x(f>x—y | y[rx — z | has a positive lower bound for all integers x> 0, y, z. The methods used have wide validity.
ISSN:1364-503X
0080-4614
1471-2962
2054-0272
DOI:10.1098/rsta.1955.0010