Label–free THz sensing of genetic sequences: towards ‘THz biochips’
THz-wave-based approaches for the label-free characterization of genetic material are described. Time-resolved THz spectroscopic analysis of genetic sequences (polynucleotides) demonstrate a distinct complex refractive index in the THz frequency range as a function of the binding state of the analys...
Gespeichert in:
Veröffentlicht in: | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2004-02, Vol.362 (1815), p.323-335 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | THz-wave-based approaches for the label-free characterization of genetic material are described. Time-resolved THz spectroscopic analysis of genetic sequences (polynucleotides) demonstrate a distinct complex refractive index in the THz frequency range as a function of the binding state of the analysed DNA sequences. By monitoring THz signals, one can thus infer the binding state of oligo- and polynucleotides, enabling the label-free determination of the genetic composition of target polynucleotides by sensing their binding to known probe molecules. Here we review integrated THz sensing array developments exhibiting high sensitivity and single-base mutation detection capabilities. Recent achievements using functionalized biosensing arrays of high-Q resonators are illustrated. |
---|---|
ISSN: | 1364-503X 1471-2962 |
DOI: | 10.1098/rsta.2003.1318 |