Some three–dimensional problems related to dielectric breakdown and polycrystal plasticity

The well-known Sachs and Taylor bounds provide easy inner and outer estimates for the effective yield set of a polycrystal. It is natural to ask whether they can be improved. We examine this question for two model problems, involving three-dimensional gradients and divergence-free vector fields. For...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2003-10, Vol.459 (2038), p.2613-2625
Hauptverfasser: Garroni, Adriana, Kohn, Robert V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2625
container_issue 2038
container_start_page 2613
container_title Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences
container_volume 459
creator Garroni, Adriana
Kohn, Robert V.
description The well-known Sachs and Taylor bounds provide easy inner and outer estimates for the effective yield set of a polycrystal. It is natural to ask whether they can be improved. We examine this question for two model problems, involving three-dimensional gradients and divergence-free vector fields. For three-dimensional gradients, the Taylor bound is far from optimal: we derive an improved estimate that scales differently when the yield set of the basic crystal is highly eccentric. For three-dimensional divergence-free vector fields, the Taylor bound may not be optimal, but it has the optimal scaling law. In both settings, the Sachs bound is optimal.
doi_str_mv 10.1098/rspa.2003.1152
format Article
fullrecord <record><control><sourceid>jstor_istex</sourceid><recordid>TN_cdi_istex_primary_ark_67375_V84_8WN7L36L_6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3560146</jstor_id><sourcerecordid>3560146</sourcerecordid><originalsourceid>FETCH-LOGICAL-c548t-cc8b0b7890c0f863caa0b6d4c3d7ab91318586d593b806188671c125b7253a023</originalsourceid><addsrcrecordid>eNp9kMuO1DAQRSMEEsPAlhWL_ECash0_smM04iW1ADE8Nkglx3Fo96TjyHYzZFbzD_whX0LSQSO1ELNyWXVP1a2bZU8JrAhU6nmIg15RALYihNN72QkpJSloVYr7U81EWXCg5GH2KMYtAFRcyZPs24Xf2TxtgrW_b341bmf76Hyvu3wIvu7sLubBdjrZJk8-b5ztrEnBmbwOVl82_qrPdd_kg-9GE8aYZrDTMTnj0vg4e9DqLtonf9_T7POrl5_O3xTr96_fnp-tC8NLlQpjVA21VBUYaJVgRmuoRVMa1khdV4QRxZVoeMVqBYIoJSQxhPJaUs40UHaarZa5JvgYg21xCG6nw4gEcM4G52xwzgbnbCaALUDw42TMG2fTiFu_D9Pl8f9UvIv6ePHhjFSV-FHyylFgCkExAiWXjOC1Gw7jZgFOAnQx7i0eZMdr_t36bNm6jcmH28sYF0BKMbWLpe1isj9v2zpcopBMcvyiSlRf38k1E2uc9XTRb9z3zZULFo-umT5DiPpg8WCOCsIm6MWd0OzY-D7ZPh2T2O67DoemZX8AoczRnA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Some three–dimensional problems related to dielectric breakdown and polycrystal plasticity</title><source>Jstor Complete Legacy</source><source>Alma/SFX Local Collection</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Garroni, Adriana ; Kohn, Robert V.</creator><creatorcontrib>Garroni, Adriana ; Kohn, Robert V.</creatorcontrib><description>The well-known Sachs and Taylor bounds provide easy inner and outer estimates for the effective yield set of a polycrystal. It is natural to ask whether they can be improved. We examine this question for two model problems, involving three-dimensional gradients and divergence-free vector fields. For three-dimensional gradients, the Taylor bound is far from optimal: we derive an improved estimate that scales differently when the yield set of the basic crystal is highly eccentric. For three-dimensional divergence-free vector fields, the Taylor bound may not be optimal, but it has the optimal scaling law. In both settings, the Sachs bound is optimal.</description><identifier>ISSN: 1364-5021</identifier><identifier>EISSN: 1471-2946</identifier><identifier>DOI: 10.1098/rspa.2003.1152</identifier><language>eng</language><publisher>The Royal Society</publisher><subject>Crystals ; Cubes ; Cylinders ; Determinants ; Dielectric Breakdown ; Dielectric materials ; Gradient fields ; Homogenization ; Nonlinear Homogenization ; Polycrystal Plasticity ; Polycrystals ; Power laws ; Sachs Bound ; Taylor Bound ; Vector fields</subject><ispartof>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2003-10, Vol.459 (2038), p.2613-2625</ispartof><rights>Copyright 2003 The Royal Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c548t-cc8b0b7890c0f863caa0b6d4c3d7ab91318586d593b806188671c125b7253a023</citedby><cites>FETCH-LOGICAL-c548t-cc8b0b7890c0f863caa0b6d4c3d7ab91318586d593b806188671c125b7253a023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3560146$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3560146$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27903,27904,57995,57999,58228,58232</link.rule.ids></links><search><creatorcontrib>Garroni, Adriana</creatorcontrib><creatorcontrib>Kohn, Robert V.</creatorcontrib><title>Some three–dimensional problems related to dielectric breakdown and polycrystal plasticity</title><title>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</title><description>The well-known Sachs and Taylor bounds provide easy inner and outer estimates for the effective yield set of a polycrystal. It is natural to ask whether they can be improved. We examine this question for two model problems, involving three-dimensional gradients and divergence-free vector fields. For three-dimensional gradients, the Taylor bound is far from optimal: we derive an improved estimate that scales differently when the yield set of the basic crystal is highly eccentric. For three-dimensional divergence-free vector fields, the Taylor bound may not be optimal, but it has the optimal scaling law. In both settings, the Sachs bound is optimal.</description><subject>Crystals</subject><subject>Cubes</subject><subject>Cylinders</subject><subject>Determinants</subject><subject>Dielectric Breakdown</subject><subject>Dielectric materials</subject><subject>Gradient fields</subject><subject>Homogenization</subject><subject>Nonlinear Homogenization</subject><subject>Polycrystal Plasticity</subject><subject>Polycrystals</subject><subject>Power laws</subject><subject>Sachs Bound</subject><subject>Taylor Bound</subject><subject>Vector fields</subject><issn>1364-5021</issn><issn>1471-2946</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNp9kMuO1DAQRSMEEsPAlhWL_ECash0_smM04iW1ADE8Nkglx3Fo96TjyHYzZFbzD_whX0LSQSO1ELNyWXVP1a2bZU8JrAhU6nmIg15RALYihNN72QkpJSloVYr7U81EWXCg5GH2KMYtAFRcyZPs24Xf2TxtgrW_b341bmf76Hyvu3wIvu7sLubBdjrZJk8-b5ztrEnBmbwOVl82_qrPdd_kg-9GE8aYZrDTMTnj0vg4e9DqLtonf9_T7POrl5_O3xTr96_fnp-tC8NLlQpjVA21VBUYaJVgRmuoRVMa1khdV4QRxZVoeMVqBYIoJSQxhPJaUs40UHaarZa5JvgYg21xCG6nw4gEcM4G52xwzgbnbCaALUDw42TMG2fTiFu_D9Pl8f9UvIv6ePHhjFSV-FHyylFgCkExAiWXjOC1Gw7jZgFOAnQx7i0eZMdr_t36bNm6jcmH28sYF0BKMbWLpe1isj9v2zpcopBMcvyiSlRf38k1E2uc9XTRb9z3zZULFo-umT5DiPpg8WCOCsIm6MWd0OzY-D7ZPh2T2O67DoemZX8AoczRnA</recordid><startdate>20031008</startdate><enddate>20031008</enddate><creator>Garroni, Adriana</creator><creator>Kohn, Robert V.</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20031008</creationdate><title>Some three–dimensional problems related to dielectric breakdown and polycrystal plasticity</title><author>Garroni, Adriana ; Kohn, Robert V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c548t-cc8b0b7890c0f863caa0b6d4c3d7ab91318586d593b806188671c125b7253a023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Crystals</topic><topic>Cubes</topic><topic>Cylinders</topic><topic>Determinants</topic><topic>Dielectric Breakdown</topic><topic>Dielectric materials</topic><topic>Gradient fields</topic><topic>Homogenization</topic><topic>Nonlinear Homogenization</topic><topic>Polycrystal Plasticity</topic><topic>Polycrystals</topic><topic>Power laws</topic><topic>Sachs Bound</topic><topic>Taylor Bound</topic><topic>Vector fields</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garroni, Adriana</creatorcontrib><creatorcontrib>Kohn, Robert V.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garroni, Adriana</au><au>Kohn, Robert V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some three–dimensional problems related to dielectric breakdown and polycrystal plasticity</atitle><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle><date>2003-10-08</date><risdate>2003</risdate><volume>459</volume><issue>2038</issue><spage>2613</spage><epage>2625</epage><pages>2613-2625</pages><issn>1364-5021</issn><eissn>1471-2946</eissn><abstract>The well-known Sachs and Taylor bounds provide easy inner and outer estimates for the effective yield set of a polycrystal. It is natural to ask whether they can be improved. We examine this question for two model problems, involving three-dimensional gradients and divergence-free vector fields. For three-dimensional gradients, the Taylor bound is far from optimal: we derive an improved estimate that scales differently when the yield set of the basic crystal is highly eccentric. For three-dimensional divergence-free vector fields, the Taylor bound may not be optimal, but it has the optimal scaling law. In both settings, the Sachs bound is optimal.</abstract><pub>The Royal Society</pub><doi>10.1098/rspa.2003.1152</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1364-5021
ispartof Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2003-10, Vol.459 (2038), p.2613-2625
issn 1364-5021
1471-2946
language eng
recordid cdi_istex_primary_ark_67375_V84_8WN7L36L_6
source Jstor Complete Legacy; Alma/SFX Local Collection; JSTOR Mathematics & Statistics
subjects Crystals
Cubes
Cylinders
Determinants
Dielectric Breakdown
Dielectric materials
Gradient fields
Homogenization
Nonlinear Homogenization
Polycrystal Plasticity
Polycrystals
Power laws
Sachs Bound
Taylor Bound
Vector fields
title Some three–dimensional problems related to dielectric breakdown and polycrystal plasticity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T03%3A26%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_istex&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20three%E2%80%93dimensional%20problems%20related%20to%20dielectric%20breakdown%20and%20polycrystal%20plasticity&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20A,%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Garroni,%20Adriana&rft.date=2003-10-08&rft.volume=459&rft.issue=2038&rft.spage=2613&rft.epage=2625&rft.pages=2613-2625&rft.issn=1364-5021&rft.eissn=1471-2946&rft_id=info:doi/10.1098/rspa.2003.1152&rft_dat=%3Cjstor_istex%3E3560146%3C/jstor_istex%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=3560146&rfr_iscdi=true