Some three–dimensional problems related to dielectric breakdown and polycrystal plasticity
The well-known Sachs and Taylor bounds provide easy inner and outer estimates for the effective yield set of a polycrystal. It is natural to ask whether they can be improved. We examine this question for two model problems, involving three-dimensional gradients and divergence-free vector fields. For...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2003-10, Vol.459 (2038), p.2613-2625 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2625 |
---|---|
container_issue | 2038 |
container_start_page | 2613 |
container_title | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences |
container_volume | 459 |
creator | Garroni, Adriana Kohn, Robert V. |
description | The well-known Sachs and Taylor bounds provide easy inner and outer estimates for the effective yield set of a polycrystal. It is natural to ask whether they can be improved. We examine this question for two model problems, involving three-dimensional gradients and divergence-free vector fields. For three-dimensional gradients, the Taylor bound is far from optimal: we derive an improved estimate that scales differently when the yield set of the basic crystal is highly eccentric. For three-dimensional divergence-free vector fields, the Taylor bound may not be optimal, but it has the optimal scaling law. In both settings, the Sachs bound is optimal. |
doi_str_mv | 10.1098/rspa.2003.1152 |
format | Article |
fullrecord | <record><control><sourceid>jstor_istex</sourceid><recordid>TN_cdi_istex_primary_ark_67375_V84_8WN7L36L_6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3560146</jstor_id><sourcerecordid>3560146</sourcerecordid><originalsourceid>FETCH-LOGICAL-c548t-cc8b0b7890c0f863caa0b6d4c3d7ab91318586d593b806188671c125b7253a023</originalsourceid><addsrcrecordid>eNp9kMuO1DAQRSMEEsPAlhWL_ECash0_smM04iW1ADE8Nkglx3Fo96TjyHYzZFbzD_whX0LSQSO1ELNyWXVP1a2bZU8JrAhU6nmIg15RALYihNN72QkpJSloVYr7U81EWXCg5GH2KMYtAFRcyZPs24Xf2TxtgrW_b341bmf76Hyvu3wIvu7sLubBdjrZJk8-b5ztrEnBmbwOVl82_qrPdd_kg-9GE8aYZrDTMTnj0vg4e9DqLtonf9_T7POrl5_O3xTr96_fnp-tC8NLlQpjVA21VBUYaJVgRmuoRVMa1khdV4QRxZVoeMVqBYIoJSQxhPJaUs40UHaarZa5JvgYg21xCG6nw4gEcM4G52xwzgbnbCaALUDw42TMG2fTiFu_D9Pl8f9UvIv6ePHhjFSV-FHyylFgCkExAiWXjOC1Gw7jZgFOAnQx7i0eZMdr_t36bNm6jcmH28sYF0BKMbWLpe1isj9v2zpcopBMcvyiSlRf38k1E2uc9XTRb9z3zZULFo-umT5DiPpg8WCOCsIm6MWd0OzY-D7ZPh2T2O67DoemZX8AoczRnA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Some three–dimensional problems related to dielectric breakdown and polycrystal plasticity</title><source>Jstor Complete Legacy</source><source>Alma/SFX Local Collection</source><source>JSTOR Mathematics & Statistics</source><creator>Garroni, Adriana ; Kohn, Robert V.</creator><creatorcontrib>Garroni, Adriana ; Kohn, Robert V.</creatorcontrib><description>The well-known Sachs and Taylor bounds provide easy inner and outer estimates for the effective yield set of a polycrystal. It is natural to ask whether they can be improved. We examine this question for two model problems, involving three-dimensional gradients and divergence-free vector fields. For three-dimensional gradients, the Taylor bound is far from optimal: we derive an improved estimate that scales differently when the yield set of the basic crystal is highly eccentric. For three-dimensional divergence-free vector fields, the Taylor bound may not be optimal, but it has the optimal scaling law. In both settings, the Sachs bound is optimal.</description><identifier>ISSN: 1364-5021</identifier><identifier>EISSN: 1471-2946</identifier><identifier>DOI: 10.1098/rspa.2003.1152</identifier><language>eng</language><publisher>The Royal Society</publisher><subject>Crystals ; Cubes ; Cylinders ; Determinants ; Dielectric Breakdown ; Dielectric materials ; Gradient fields ; Homogenization ; Nonlinear Homogenization ; Polycrystal Plasticity ; Polycrystals ; Power laws ; Sachs Bound ; Taylor Bound ; Vector fields</subject><ispartof>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2003-10, Vol.459 (2038), p.2613-2625</ispartof><rights>Copyright 2003 The Royal Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c548t-cc8b0b7890c0f863caa0b6d4c3d7ab91318586d593b806188671c125b7253a023</citedby><cites>FETCH-LOGICAL-c548t-cc8b0b7890c0f863caa0b6d4c3d7ab91318586d593b806188671c125b7253a023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3560146$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3560146$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27903,27904,57995,57999,58228,58232</link.rule.ids></links><search><creatorcontrib>Garroni, Adriana</creatorcontrib><creatorcontrib>Kohn, Robert V.</creatorcontrib><title>Some three–dimensional problems related to dielectric breakdown and polycrystal plasticity</title><title>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</title><description>The well-known Sachs and Taylor bounds provide easy inner and outer estimates for the effective yield set of a polycrystal. It is natural to ask whether they can be improved. We examine this question for two model problems, involving three-dimensional gradients and divergence-free vector fields. For three-dimensional gradients, the Taylor bound is far from optimal: we derive an improved estimate that scales differently when the yield set of the basic crystal is highly eccentric. For three-dimensional divergence-free vector fields, the Taylor bound may not be optimal, but it has the optimal scaling law. In both settings, the Sachs bound is optimal.</description><subject>Crystals</subject><subject>Cubes</subject><subject>Cylinders</subject><subject>Determinants</subject><subject>Dielectric Breakdown</subject><subject>Dielectric materials</subject><subject>Gradient fields</subject><subject>Homogenization</subject><subject>Nonlinear Homogenization</subject><subject>Polycrystal Plasticity</subject><subject>Polycrystals</subject><subject>Power laws</subject><subject>Sachs Bound</subject><subject>Taylor Bound</subject><subject>Vector fields</subject><issn>1364-5021</issn><issn>1471-2946</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNp9kMuO1DAQRSMEEsPAlhWL_ECash0_smM04iW1ADE8Nkglx3Fo96TjyHYzZFbzD_whX0LSQSO1ELNyWXVP1a2bZU8JrAhU6nmIg15RALYihNN72QkpJSloVYr7U81EWXCg5GH2KMYtAFRcyZPs24Xf2TxtgrW_b341bmf76Hyvu3wIvu7sLubBdjrZJk8-b5ztrEnBmbwOVl82_qrPdd_kg-9GE8aYZrDTMTnj0vg4e9DqLtonf9_T7POrl5_O3xTr96_fnp-tC8NLlQpjVA21VBUYaJVgRmuoRVMa1khdV4QRxZVoeMVqBYIoJSQxhPJaUs40UHaarZa5JvgYg21xCG6nw4gEcM4G52xwzgbnbCaALUDw42TMG2fTiFu_D9Pl8f9UvIv6ePHhjFSV-FHyylFgCkExAiWXjOC1Gw7jZgFOAnQx7i0eZMdr_t36bNm6jcmH28sYF0BKMbWLpe1isj9v2zpcopBMcvyiSlRf38k1E2uc9XTRb9z3zZULFo-umT5DiPpg8WCOCsIm6MWd0OzY-D7ZPh2T2O67DoemZX8AoczRnA</recordid><startdate>20031008</startdate><enddate>20031008</enddate><creator>Garroni, Adriana</creator><creator>Kohn, Robert V.</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20031008</creationdate><title>Some three–dimensional problems related to dielectric breakdown and polycrystal plasticity</title><author>Garroni, Adriana ; Kohn, Robert V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c548t-cc8b0b7890c0f863caa0b6d4c3d7ab91318586d593b806188671c125b7253a023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Crystals</topic><topic>Cubes</topic><topic>Cylinders</topic><topic>Determinants</topic><topic>Dielectric Breakdown</topic><topic>Dielectric materials</topic><topic>Gradient fields</topic><topic>Homogenization</topic><topic>Nonlinear Homogenization</topic><topic>Polycrystal Plasticity</topic><topic>Polycrystals</topic><topic>Power laws</topic><topic>Sachs Bound</topic><topic>Taylor Bound</topic><topic>Vector fields</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garroni, Adriana</creatorcontrib><creatorcontrib>Kohn, Robert V.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garroni, Adriana</au><au>Kohn, Robert V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some three–dimensional problems related to dielectric breakdown and polycrystal plasticity</atitle><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle><date>2003-10-08</date><risdate>2003</risdate><volume>459</volume><issue>2038</issue><spage>2613</spage><epage>2625</epage><pages>2613-2625</pages><issn>1364-5021</issn><eissn>1471-2946</eissn><abstract>The well-known Sachs and Taylor bounds provide easy inner and outer estimates for the effective yield set of a polycrystal. It is natural to ask whether they can be improved. We examine this question for two model problems, involving three-dimensional gradients and divergence-free vector fields. For three-dimensional gradients, the Taylor bound is far from optimal: we derive an improved estimate that scales differently when the yield set of the basic crystal is highly eccentric. For three-dimensional divergence-free vector fields, the Taylor bound may not be optimal, but it has the optimal scaling law. In both settings, the Sachs bound is optimal.</abstract><pub>The Royal Society</pub><doi>10.1098/rspa.2003.1152</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-5021 |
ispartof | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2003-10, Vol.459 (2038), p.2613-2625 |
issn | 1364-5021 1471-2946 |
language | eng |
recordid | cdi_istex_primary_ark_67375_V84_8WN7L36L_6 |
source | Jstor Complete Legacy; Alma/SFX Local Collection; JSTOR Mathematics & Statistics |
subjects | Crystals Cubes Cylinders Determinants Dielectric Breakdown Dielectric materials Gradient fields Homogenization Nonlinear Homogenization Polycrystal Plasticity Polycrystals Power laws Sachs Bound Taylor Bound Vector fields |
title | Some three–dimensional problems related to dielectric breakdown and polycrystal plasticity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T03%3A26%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_istex&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20three%E2%80%93dimensional%20problems%20related%20to%20dielectric%20breakdown%20and%20polycrystal%20plasticity&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20A,%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Garroni,%20Adriana&rft.date=2003-10-08&rft.volume=459&rft.issue=2038&rft.spage=2613&rft.epage=2625&rft.pages=2613-2625&rft.issn=1364-5021&rft.eissn=1471-2946&rft_id=info:doi/10.1098/rspa.2003.1152&rft_dat=%3Cjstor_istex%3E3560146%3C/jstor_istex%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=3560146&rfr_iscdi=true |