Some three–dimensional problems related to dielectric breakdown and polycrystal plasticity

The well-known Sachs and Taylor bounds provide easy inner and outer estimates for the effective yield set of a polycrystal. It is natural to ask whether they can be improved. We examine this question for two model problems, involving three-dimensional gradients and divergence-free vector fields. For...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2003-10, Vol.459 (2038), p.2613-2625
Hauptverfasser: Garroni, Adriana, Kohn, Robert V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The well-known Sachs and Taylor bounds provide easy inner and outer estimates for the effective yield set of a polycrystal. It is natural to ask whether they can be improved. We examine this question for two model problems, involving three-dimensional gradients and divergence-free vector fields. For three-dimensional gradients, the Taylor bound is far from optimal: we derive an improved estimate that scales differently when the yield set of the basic crystal is highly eccentric. For three-dimensional divergence-free vector fields, the Taylor bound may not be optimal, but it has the optimal scaling law. In both settings, the Sachs bound is optimal.
ISSN:1364-5021
1471-2946
DOI:10.1098/rspa.2003.1152