Surface scattering in three dimensions: an accelerated high–order solver
We present a new algorithm for the numerical solution of problems of acoustic scattering by surfaces in three-dimensional space. This algorithm evaluates scattered fields through fast, high-order, accurate solution of the corresponding boundary integral equation. The high-order accuracy of our solve...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2001-12, Vol.457 (2016), p.2921-2934 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a new algorithm for the numerical solution of problems of acoustic scattering by surfaces in three-dimensional space. This algorithm evaluates scattered fields through fast, high-order, accurate solution of the corresponding boundary integral equation. The high-order accuracy of our solver is achieved through use of partitions of unityI together with analytical resolution of kernel singularities. The acceleration, in turn, results from use of high-order equivalent source approximations, which allow for fast evaluation of non-adjacent interactions by means of the three-dimensional fast Fourier transform (FFT). Our acceleration scheme has dramatically lower memory requirements and yields much higher accuracy than existing FFT-accelerated techniques. The present algorithm computes one matrix-vector multiply in O(N6/5logN) to O(N4/3logN) operations (depending on the geometric characteristics of the scattering surface), it exhibits super-algebraic convergence, and it does not suffer from accuracy breakdowns of any kind. We demonstrate the efficiency of our method through a variety of examples. In particular, we show that the present algorithm can evaluate accurately, on a personal computer, scattering from bodies of acoustical sizes (ka) of several hundreds. |
---|---|
ISSN: | 1364-5021 1471-2946 |
DOI: | 10.1098/rspa.2001.0882 |