Iron Chemistry of a Pentadentate Ligand That Generates a Metastable FeIII−OOH Intermediate

In an effort to gain more insight into the factors controlling the formation of low-spin non-heme FeIII−peroxo intermediates in oxidation catalysis, such as activated bleomycin, we have synthesized a series of iron complexes based on the pentadentate ligand N4Py (N4Py = N,N-bis(2-pyridylmethyl)-N-(b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganic chemistry 1999-04, Vol.38 (8), p.1929-1936
Hauptverfasser: Roelfes, Gerard, Lubben, Marcel, Chen, Kui, Ho, Raymond Y. N, Meetsma, Auke, Genseberger, Susan, Hermant, Roel M, Hage, Ronald, Mandal, Sanjay K, Young, Victor G, Zang, Yan, Kooijman, Huub, Spek, Anthony L, Que, Lawrence, Feringa, Ben L
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In an effort to gain more insight into the factors controlling the formation of low-spin non-heme FeIII−peroxo intermediates in oxidation catalysis, such as activated bleomycin, we have synthesized a series of iron complexes based on the pentadentate ligand N4Py (N4Py = N,N-bis(2-pyridylmethyl)-N-(bis-2-pyridylmethyl)amine). The following complexes have been prepared:  [(N4Py)FeII(CH3CN)](ClO4)2 (1), [(N4Py)FeIICl](ClO4) (2), [(N4Py)FeIIIOMe](ClO4)2 (3), and [(N4Py)2Fe2O](ClO4)4 (4). Complexes 1 and 2 have low- and high-spin FeII centers, respectively, whereas 3 is an FeIII complex that undergoes a temperature-dependent spin transition. The iron centers in the oxo-bridged dimer 4 are antiferromagnetically coupled (J = −104 cm-1). Comparison of the crystal structures of 1, 3, and 4 shows that the ligand is well suited to accommodate both FeII and FeIII in either spin state. For the high-spin FeIII complexes 3 and 4 the iron atoms are positioned somewhat outside of the cavity formed by the ligand, while in the case of the low-spin FeII complex 1 the iron atom is retained in the middle of the cavity with approximately equal bond lengths to all nitrogen atoms from the ligand. On the basis of UV/vis and EPR observations, it is shown that 1, 3, and 4 all react with H2O2 to generate the purple low-spin [(N4Py)FeIIIOOH]2+ intermediate (6). In the case of 1, titration experiments with H2O2 monitored by UV/vis and 1H NMR reveal the formation of [(N4Py)FeIIIOH]2+ (5) and the oxo-bridged diiron(III) dimer (4) prior to the generation of the FeIII−OOH species (6). Raman spectra of 6 show distinctive Raman features, particularly a ν(O−O) at 790 cm-1 that is the lowest observed for any iron−peroxo species. This observation may rationalize the reactivity of low-spin FeIII−OOH species such as “activated bleomycin”.
ISSN:0020-1669
1520-510X
DOI:10.1021/ic980983p