A Study of the Thermal Decomposition of 2-Azidoacetamide by Ultraviolet Photoelectron Spectroscopy and Matrix-Isolation Infrared Spectroscopy: Identification of the Imine Intermediate H2NCOCHNH
The thermal decomposition of 2-azidoacetamide (N3CH2CONH2) has been studied by matrix-isolation infrared spectroscopy and real-time ultraviolet photoelectron spectroscopy. N2, CH2NH, HNCO, CO, NH3, and HCN are observed as high-temperature decomposition products, while at lower temperatures, the nove...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2004-06, Vol.108 (25), p.5299-5307 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The thermal decomposition of 2-azidoacetamide (N3CH2CONH2) has been studied by matrix-isolation infrared spectroscopy and real-time ultraviolet photoelectron spectroscopy. N2, CH2NH, HNCO, CO, NH3, and HCN are observed as high-temperature decomposition products, while at lower temperatures, the novel imine intermediate H2NCOCHNH is observed in the matrix-isolation IR experiments. The identity of this intermediate is confirmed both by ab initio molecular orbital calculations of its IR spectrum and by the temperature dependence and distribution of products in the photoelectron spectroscopy (PES) and IR studies. Mechanisms are proposed for the formation and decomposition of the intermediate consistent both with the observed results and with estimated activation energies based on pathway calculations. |
---|---|
ISSN: | 1089-5639 1520-5215 |
DOI: | 10.1021/jp031288s |