Nature of the Metal−Ligand Bond in M(CO)5PX3 Complexes (M = Cr, Mo, W; X = H, Me, F, Cl): Synthesis, Molecular Structure, and Quantum-Chemical Calculations
The syntheses of the phosphane complexes M(CO)5PH3 (M = Mo, W), W(CO)5PD3, and W(CO)5PF3 and the results of X-ray structure analyses of W(CO)5PH3 and Mo(CO)5PCl3 are reported. Quantum-chemical DFT calculations of the geometries and M−P bond dissociation energies of M(CO)5PX3 (M = Cr, Mo, W; X = H, M...
Gespeichert in:
Veröffentlicht in: | Organometallics 2002-07, Vol.21 (14), p.2921-2930 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The syntheses of the phosphane complexes M(CO)5PH3 (M = Mo, W), W(CO)5PD3, and W(CO)5PF3 and the results of X-ray structure analyses of W(CO)5PH3 and Mo(CO)5PCl3 are reported. Quantum-chemical DFT calculations of the geometries and M−P bond dissociation energies of M(CO)5PX3 (M = Cr, Mo, W; X = H, Me, F, Cl) have been carried out. There is no correlation between the bond lengths and bond dissociation energies of the M−P bonds. The PMe3 ligand forms the strongest and the longest M−P bonds of the phosphane ligands. The analysis of M−PX3 bonds shows that PCl3 is a poorer σ donor and a stronger π(P) acceptor than the other phosphanes. The energy decomposition analysis indicates that the M−P bonds of the PH3 and PMe3 complexes have a higher electrostatic than covalent character. The electrostatic contribution is between 56 and 66% of the total attractive interactions. The orbital interactions in the M−PH3 and M−PMe3 bonds have more σ character (65−75%) than π character (25−35%). The M−P bonds of the halophosphane complexes M(CO)5PF3 and M(CO)5PCl3 are nearly half covalent and half electrostatic. The π bonding contributes ∼50% to the total orbital interaction. |
---|---|
ISSN: | 0276-7333 1520-6041 |
DOI: | 10.1021/om020311d |