Precise Tuning of Porosity and Surface Functionality in Au@SiO2 Nanoreactors for High Catalytic Efficiency

Nanoreactor frameworks have many advantages over bulk catalyst structures in terms of providing a regular reaction environment and conformational stability. In this work, Au@SiO2 nanoreactor frameworks were chemically modified to improve the catalytic efficiency of o-nitroaniline reduction. The poro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2008-09, Vol.20 (18), p.5839-5844
Hauptverfasser: Lee, Joongoo, Park, Ji Chan, Bang, Jung Up, Song, Hyunjoon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nanoreactor frameworks have many advantages over bulk catalyst structures in terms of providing a regular reaction environment and conformational stability. In this work, Au@SiO2 nanoreactor frameworks were chemically modified to improve the catalytic efficiency of o-nitroaniline reduction. The porosity of silica shells was readily controlled by introducing C18TMS as a porogen with heat treatment. The diffusion rate of the silica layers was tuned from 5.9 × 10−19 to 2.1 × 10−18 m2 s−1, which directly altered the turnover frequency and rate constant of the reaction. Carboxylate functionality was introduced on the gold cores of Au@SiO2 nanoreactors by 3-MPA addition. The reaction rate was enhanced by a maximum of 2.4 times compared to unfunctionalized catalysts through a strong interaction between carboxylate anions and o-nitroaniline. Totally, the rate constant of Au@SiO2 yolk−shell nanoreactors exhibits a 13-fold enhancement by diffusion and surface functionality control. These results indicate that the rational design of a nanoreactor framework with appropriate chemical functionalization can maximize the catalytic efficiency of various solution-phase reactions.
ISSN:0897-4756
1520-5002
DOI:10.1021/cm801149w