Partial Hydrogenation of 1,3-Butadiene on Hydrogen-Precovered Pd(110) in the Balance of π-Bonded C4 Hydrocarbon Reactions

The hydrogenation and dehydrogenation of C4 hydrocarbon molecules (1,3-butadiene, 1-butene, trans-2-butene, cis-2-butene, and n-butane) on the hydrogen-precovered Pd(110) surface have been investigated by high-resolution electron energy loss spectroscopy (HREELS) and temperature-programmed desorptio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2008-11, Vol.112 (44), p.17219-17224
Hauptverfasser: Katano, Satoshi, Kato, Hiroyuki S, Kawai, Maki, Domen, Kazunari
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The hydrogenation and dehydrogenation of C4 hydrocarbon molecules (1,3-butadiene, 1-butene, trans-2-butene, cis-2-butene, and n-butane) on the hydrogen-precovered Pd(110) surface have been investigated by high-resolution electron energy loss spectroscopy (HREELS) and temperature-programmed desorption (TPD). 1,3-Butadiene was found to be adsorbed molecularly on the surface below 350 K. Further heating of the surface resulted in decomposition, forming hydrocarbons at 350 K and finally the graphite layer at 550 K. The butene isomers and n-butane adsorbed on the surface were, however, relatively unstable compared with 1,3-butadiene when heated. Some of the adsorbed butenes were desorbed, and the species that remained on the surface were dehydrogenated to 1,3-butadiene between 150 and 250 K. n-Butane on the surface showed similar reaction behavior except for the lower dehydrogenation and desorption temperature. Our findings indicate that the dehydrogenations of π-bonded C4 hydrocarbons on the Pd surface show significantly different pathways compared with those of the σ-bonded C4 hydrocarbon on Pt and Ru surfaces. Here, we discuss the selective partial hydrogenation of 1,3-butadiene on hydrogen-precovered Pd(110) in terms of the reactivity of the butenes and butanes.
ISSN:1932-7447
1932-7455
DOI:10.1021/jp8042335