Flavonols and Crown-Flavonols as Metal Cation Chelators. The Different Nature of Ba2+ and Mg2+ Complexes
The derivatives of 3-hydroxyflavone exhibit excited-state intramolecular proton transfer (ESIPT) reaction with significant (60−80 nm) shifts of fluorescence spectra between normal and phototautomer forms. This fact makes these compounds attractive as fluorescence probes in analytical chemistry, biop...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 1998-07, Vol.102 (29), p.5907-5914 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The derivatives of 3-hydroxyflavone exhibit excited-state intramolecular proton transfer (ESIPT) reaction with significant (60−80 nm) shifts of fluorescence spectra between normal and phototautomer forms. This fact makes these compounds attractive as fluorescence probes in analytical chemistry, biophysics, and molecular biology. Different flavonol derivatives, including 4‘-(monoaza-15-crown-5)flavonol, were synthesized, and their absorption and fluorescent spectra were studied in acetonitrile in the presence of different concentrations of Mg2+ and Ba2+ ions. It was shown that the general feature of flavonols is the ability to form two types of complexes with alkaline-earth cations: the low-stability “external” and high-stability chelating complexes. On the formation of the complexes, parent flavonols and their 4‘-dialkylamino derivatives undergo different perturbations of their electronic structures. 4‘-(Monoaza-15-crown-5)flavonol forms two types of complexes with both Mg2+ and Ba2+ ions; the sequence of steps in formation of Ba2+ and Mg2+ complexes is different. |
---|---|
ISSN: | 1089-5639 1520-5215 |
DOI: | 10.1021/jp972519w |