Cysteine-Rich Secretory Protein 3 Is a Ligand of α1B-Glycoprotein in Human Plasma
Human cysteine-rich secretory protein 3 (CRISP-3; also known as SGP28) belongs to a family of closely related proteins found in mammals and reptiles. Some mammalian CRISPs are known to be involved in the process of reproduction, whereas some of the CRISPs from reptiles are neurotoxin-like substances...
Gespeichert in:
Veröffentlicht in: | Biochemistry (Easton) 2004-10, Vol.43 (40), p.12877-12886 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Human cysteine-rich secretory protein 3 (CRISP-3; also known as SGP28) belongs to a family of closely related proteins found in mammals and reptiles. Some mammalian CRISPs are known to be involved in the process of reproduction, whereas some of the CRISPs from reptiles are neurotoxin-like substances found in lizard saliva or snake venom. Human CRISP-3 is present in exocrine secretions and in secretory granules of neutrophilic granulocytes and is believed to play a role in innate immunity. On the basis of the relatively high content of CRISP-3 in human plasma and the small size of the protein (28 kDa), we hypothesized that CRISP-3 in plasma was bound to another component. This was supported by size-exclusion chromatography and immunoprecipitation of plasma proteins. The binding partner was identified by mass spectrometry as α1B-glycoprotein (A1BG), which is a known plasma protein of unknown function and a member of the immunoglobulin superfamily. We demonstrate that CRISP-3 is a specific and high-affinity ligand of A1BG with a dissociation constant in the nanomolar range as evidenced by surface plasmon resonance. The A1BG−CRISP-3 complex is noncovalent with a 1:1 stoichiometry and is held together by strong electrostatic forces. Similar complexes have been described between toxins from snake venom and A1BG-like plasma proteins from opossum species. In these cases, complex formation inhibits the toxic effect of snake venom metalloproteinases or myotoxins and protects the animal from envenomation. We suggest that the A1BG−CRISP-3 complex displays a similar function in protecting the circulation from a potentially harmful effect of free CRISP-3. |
---|---|
ISSN: | 0006-2960 1520-4995 |
DOI: | 10.1021/bi048823e |