Nonlinear Contractions on Semimetric Spaces

Let (X, d) be a Hausdorff semimetric (d need not satisfy the triangle inequality) and d–Cauchy complete space. Let ƒ be a selfmap on X, for which d(ƒx, ƒy) ≤ φ(d(x, y)), (x, y ∈ X), where φ is a non– decreasing function from R +, the nonnegative reals, into R + such that φn (t) → 0, for all t ∈ R +....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied analysis 1995-12, Vol.1 (2), p.125-133
Hauptverfasser: Jachymski, J., Matkowski, J., Świa̧tkowski, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let (X, d) be a Hausdorff semimetric (d need not satisfy the triangle inequality) and d–Cauchy complete space. Let ƒ be a selfmap on X, for which d(ƒx, ƒy) ≤ φ(d(x, y)), (x, y ∈ X), where φ is a non– decreasing function from R +, the nonnegative reals, into R + such that φn (t) → 0, for all t ∈ R +. We prove that ƒ has a unique fixed point if there exists an r > 0, for which the diameters of all balls in X with radius r are equi-bounded. Such a class of semimetric spaces includes the Frechet spaces with a regular ecart, for which the Contraction Principle was established earlier by M. Cicchese [Boll. Un. Mat. Ital 13–A: 175-179, 1976], however, with some further restrictions on a space and a map involved. We also demonstrate that for maps ƒ satisfying the condition d(ƒx, ƒy) ≤ φ(max{d(x, ƒx), d(y, ƒy)}), (x, y ∈ X) (the Bianchini [Boll. Un. Mat. Ital. 5: 103–108, 1972] type condition), a fixed point theorem holds under substantially weaker assumptions on a distance function d.
ISSN:1425-6908
1869-6082
DOI:10.1515/JAA.1995.125