Tests for Serial Independence and Linearity Based on Correlation Integrals

Abstract We propose information theoretic tests for serial independence and linearity in time series against nonlinear dependence on lagged variables, based on the conditional mutual information. The conditional mutual information, which is a general measure for dependence, is estimated using the co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Studies in Nonlinear Dynamics & Econometrics 2002-07, Vol.6 (2), p.2
Hauptverfasser: Diks, Cees, Manzan, Sebastiano
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract We propose information theoretic tests for serial independence and linearity in time series against nonlinear dependence on lagged variables, based on the conditional mutual information. The conditional mutual information, which is a general measure for dependence, is estimated using the correlation integral from chaos theory. The significance of the test statistics is determined by means of bootstrap methods. The size and power properties of the tests are examined by simulation and illustrated with applications to real US GNP data. Recommended Citation Cees Diks and Sebastiano Manzan (2002) "Tests for Serial Independence and Linearity Based on Correlation Integrals", Studies in Nonlinear Dynamics & Econometrics: Vol. 6: No. 2, Article 2. http://www.bepress.com/snde/vol6/iss2/art2 Related Files datacode.zip (13 kB) Data & Code
ISSN:1558-3708
1558-3708
DOI:10.2202/1558-3708.1005